998 resultados para low emissivity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a technique which can be used to improve the accuracy of infrared (IR) surface temperature measurements made on MEMS (Micro-Electro-Mechanical- Systems) devices. The technique was used to thermally characterize a SOI (Silicon-On-Insulator) CMOS (Complementary Metal Oxide Semiconductor) MEMS thermal flow sensor. Conventional IR temperature measurements made on the sensor were shown to give significant surface temperature errors, due to the optical transparency of the SiO 2 membrane layers and low emissivity/high reflectivity of the metal. By making IR measurements on radiative carbon micro-particles placed in isothermal contact with the device, the accuracy of the surface temperature measurement was significantly improved. © 2010 EDA Publishing/THERMINIC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years scientists have made rapid and significant advances in the field of semiconductor physics. One of the most important fields of current interest in materials science is the fundamental aspects and applications of conducting transparent oxide thin films (TCO). The characteristic properties of such coatings are low electrical resistivity and high transparency in the visible region. The first semitransparent and electrically conducting CdO film was reported as early as in 1907 [1]. Though early work on these films was performed out of purely scientific interest, substantial technological advances in such films were made after 1940. The technological interest in the study of transparent semiconducting films was generated mainly due to the potential applications of these materials both in industry and research. Such films demonstrated their utility as transparent electrical heaters for windscreens in the aircraft industry. However, during the last decade, these conducting transparent films have been widely used in a variety of other applications such as gas sensors [2], solar cells [3], heat reflectors [4], light emitting devices [5] and laser damage resistant coatings in high power laser technology [6]. Just a few materials dominate the current TCO industry and the two dominant markets for TCO’s are in architectural applications and flat panel displays. The architectural use of TCO is for energy efficient windows. Fluorine doped tin oxide (FTO), deposited using a pyrolysis process is the TCO usually finds maximum application. SnO2 also finds application ad coatings for windows, which are efficient in preventing radiative heat loss, due to low emissivity (0.16). Pyrolitic tin oxide is used in PV modules, touch screens and plasma displays. However indium tin oxide (ITO) is mostly used in the majority of flat panel display (FPD) applications. In FPDs, the basic function of ITO is as transparent electrodes. The volume of FPD’s produced, and hence the volume of ITO coatings produced, continues to grow rapidly. But the current increase in the cost of indium and the scarcity of this material created the difficulty in obtaining low cost TCOs. Hence search for alternative TCO materials has been a topic of active research for the last few decades. This resulted in the development of binary materials like ZnO, SnO2, CdO and ternary materials like II Zn2SnO4, CdSb2O6:Y, ZnSO3, GaInO3 etc. The use of multicomponent oxide materials makes it possible to have TCO films suitable for specialized applications because by altering their chemical compositions, one can control the electrical, optical, chemical and physical properties. But the advantages of using binary materials are the easiness to control the chemical compositions and depositions conditions. Recently, there were reports claiming the deposition of CdO:In films with a resistivity of the order of 10-5 ohm cm for flat panel displays and solar cells. However they find limited use because of Cd-Toxicity. In this regard, ZnO films developed in 1980s, are very useful as these use Zn, an abundant, inexpensive and nontoxic material. Resistivity of this material is still not very low, but can be reduced through doping with group-III elements like In, Al or Ga or with F [6]. Hence there is a great interest in ZnO as an alternative of ITO. In the present study, we prepared and characterized transparent and conducting ZnO thin films, using a cost effective technique viz Chemical Spray Pyrolysis (CSP). This technique is also suitable for large area film deposition. It involves spraying a solution, (usually aqueous) containing soluble salts of the constituents of the desired compound, onto a heated substrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the study is to develop a model for the energy balance of buildings that includes the effect from the radiation properties of interior and exterior surfaces of the building envelope. As a first step we have used ice arenas as case study objects to investigate the importance of interior low emissivity surfaces. Measurements have been done in two ice arenas in the north part of Sweden, one with lower and one with higher ceiling emissivity. The results show that the low emissivity ceiling gives a much lower radiation temperature interacting with the ice under similar conditions. The dynamic modelling of the roof in ice arenas shows a similar dependence of the roof-to-ice heat flux and the ceiling emissivity.A second part of the study focus on how to realise paints with very low thermal emissivity to be used on interior building surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of reflective surfaces functioning as thermal insulator has grown significantly over the years. Reflective thermal insulator are materials that have several characteristics such as low emissivity, low absorptivity and high reflectivity in the infrared spectrum. The use of these materials has grown a lot lately, since it contains several important radioactive properties that minimize the heat loss of thermal systems and cooling systems that are used to block the heat on the roof of buildings. A system made of three surfaces of 316 stainless steel mirror was built to analyze the influence of reflective surfaces as a way to reduce the heat loss and thereby conserve the energy of a thermal system. The system was analyzed both with and without the presence of vacuum, and then compared with a system that contained glass wool between the stainless steel mirror walls, since this isolator is considered resistive and also broadly used around the world in thermal systems. The reflectivity and emissivity of the surfaces used were also measured in this experiment. A type K thermocouple was fixed on the wall of the system to obtain the temperature of the stainless steel mirror surfaces and to analyze the thermal behavior of each configuration used. The results showed an efficiency of 13% when the reflective surfaces were used to minimize the heat loss of the thermal system. However, the system with vacuum had the best outcome, a 60% efficiency. Both of these were compared to the system made of glass wool as a thermal insulator

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study includes the results of the analysis of areas susceptible to degradation by remote sensing in semi-arid region, which is a matter of concern and affects the whole population and the catalyst of this process occurs by the deforestation of the savanna and improper practices by the use of soil. The objective of this research is to use biophysical parameters of the MODIS / Terra and images TM/Landsat-5 to determine areas susceptible to degradation in semi-arid Paraiba. The study area is located in the central interior of Paraíba, in the sub-basin of the River Taperoá, with average annual rainfall below 400 mm and average annual temperature of 28 ° C. To draw up the map of vegetation were used TM/Landsat-5 images, specifically, the composition 5R4G3B colored, commonly used for mapping land use. This map was produced by unsupervised classification by maximum likelihood. The legend corresponds to the following targets: savanna vegetation sparse and dense, riparian vegetation and exposed soil. The biophysical parameters used in the MODIS were emissivity, albedo and vegetation index for NDVI (NDVI). The GIS computer programs used were Modis Reprojections Tools and System Information Processing Georeferenced (SPRING), which was set up and worked the bank of information from sensors MODIS and TM and ArcGIS software for making maps more customizable. Initially, we evaluated the behavior of the vegetation emissivity by adapting equation Bastiaanssen on NDVI for spatialize emissivity and observe changes during the year 2006. The albedo was used to view your percentage of increase in the periods December 2003 and 2004. The image sensor of Landsat TM were used for the month of December 2005, according to the availability of images and in periods of low emissivity. For these applications were made in language programs for GIS Algebraic Space (LEGAL), which is a routine programming SPRING, which allows you to perform various types of algebras of spatial data and maps. For the detection of areas susceptible to environmental degradation took into account the behavior of the emissivity of the savanna that showed seasonal coinciding with the rainy season, reaching a maximum emissivity in the months April to July and in the remaining months of a low emissivity . With the images of the albedo of December 2003 and 2004, it was verified the percentage increase, which allowed the generation of two distinct classes: areas with increased variation percentage of 1 to 11.6% and the percentage change in areas with less than 1 % albedo. It was then possible to generate the map of susceptibility to environmental degradation, with the intersection of the class of exposed soil with varying percentage of the albedo, resulting in classes susceptibility to environmental degradation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the Smarty Board; a new micro-controller board designed specifically for the robotics teaching needs of Australian schools. The primary motivation for this work was the lack of commercially available and cheap controller boards that would have all their components including interfaces on a single board. Having a single board simplifies the construction of programmable robots that can be used as platforms for teaching and learning robotics. Reducing the cost of the board as much as possible was one of the main design objectives. The target user groups for this device are the secondary and tertiary students, and hobbyists. Previous studies have shown that equipment cost is one of the major obstacles for teaching robotics in Australia. The new controller board was demonstrated at high-school seminars. In these demonstrations the new controller board was used for controlling two robots that we built. These robots are available as kits. Given the strong demand from high-school teachers, new kits will be developed for the next robotic Olympiad to be held in Australia in 2006.

Relevância:

20.00% 20.00%

Publicador: