905 resultados para longitudinal data-analysis
Resumo:
Linear mixed effects models are frequently used to analyse longitudinal data, due to their flexibility in modelling the covariance structure between and within observations. Further, it is easy to deal with unbalanced data, either with respect to the number of observations per subject or per time period, and with varying time intervals between observations. In most applications of mixed models to biological sciences, a normal distribution is assumed both for the random effects and for the residuals. This, however, makes inferences vulnerable to the presence of outliers. Here, linear mixed models employing thick-tailed distributions for robust inferences in longitudinal data analysis are described. Specific distributions discussed include the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted, and the Gibbs sampler and the Metropolis-Hastings algorithms are used to carry out the posterior analyses. An example with data on orthodontic distance growth in children is discussed to illustrate the methodology. Analyses based on either the Student-t distribution or on the usual Gaussian assumption are contrasted. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process for modelling distributions of the random effects and of residuals in linear mixed models, and the MCMC implementation allows the computations to be performed in a flexible manner.
Resumo:
Most statistical analysis, theory and practice, is concerned with static models; models with a proposed set of parameters whose values are fixed across observational units. Static models implicitly assume that the quantified relationships remain the same across the design space of the data. While this is reasonable under many circumstances this can be a dangerous assumption when dealing with sequentially ordered data. The mere passage of time always brings fresh considerations and the interrelationships among parameters, or subsets of parameters, may need to be continually revised. ^ When data are gathered sequentially dynamic interim monitoring may be useful as new subject-specific parameters are introduced with each new observational unit. Sequential imputation via dynamic hierarchical models is an efficient strategy for handling missing data and analyzing longitudinal studies. Dynamic conditional independence models offers a flexible framework that exploits the Bayesian updating scheme for capturing the evolution of both the population and individual effects over time. While static models often describe aggregate information well they often do not reflect conflicts in the information at the individual level. Dynamic models prove advantageous over static models in capturing both individual and aggregate trends. Computations for such models can be carried out via the Gibbs sampler. An application using a small sample repeated measures normally distributed growth curve data is presented. ^
Resumo:
The paper investigates a Bayesian hierarchical model for the analysis of categorical longitudinal data from a large social survey of immigrants to Australia. Data for each subject are observed on three separate occasions, or waves, of the survey. One of the features of the data set is that observations for some variables are missing for at least one wave. A model for the employment status of immigrants is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response and then subsequent terms are introduced to explain wave and subject effects. To estimate the model, we use the Gibbs sampler, which allows missing data for both the response and the explanatory variables to be imputed at each iteration of the algorithm, given some appropriate prior distributions. After accounting for significant covariate effects in the model, results show that the relative probability of remaining unemployed diminished with time following arrival in Australia.
Resumo:
Dual-energy X-ray absorptiometry (DXA) is a widely used method for measuring bone mineral in the growing skeleton. Because scan analysis in children offers a number of challenges, we compared DXA results using six analysis methods at the total proximal femur (PF) and five methods at the femoral neck (FN), In total we assessed 50 scans (25 boys, 25 girls) from two separate studies for cross-sectional differences in bone area, bone mineral content (BMC), and areal bone mineral density (aBMD) and for percentage change over the short term (8 months) and long term (7 years). At the proximal femur for the short-term longitudinal analysis, there was an approximate 3.5% greater change in bone area and BMC when the global region of interest (ROI) was allowed to increase in size between years as compared with when the global ROI was held constant. Trend analysis showed a significant (p < 0.05) difference between scan analysis methods for bone area and BMC across 7 years. At the femoral neck, cross-sectional analysis using a narrower (from default) ROI, without change in location, resulted in a 12.9 and 12.6% smaller bone area and BMC, respectively (both p < 0.001), Changes in FN area and BMC over 8 months were significantly greater (2.3 %, p < 0.05) using a narrower FN rather than the default ROI, Similarly, the 7-year longitudinal data revealed that differences between scan analysis methods were greatest when the narrower FN ROI was maintained across all years (p < 0.001), For aBMD there were no significant differences in group means between analysis methods at either the PF or FN, Our findings show the need to standardize the analysis of proximal femur DXA scans in growing children.
Resumo:
The objective of this work was to evaluate the Nelore beef cattle, growth curve parameters using the Von Bertalanffy function in a nested Bayesian procedure that allowed estimation of the joint posterior distribution of growth curve parameters, their (co)variance components, and the environmental and additive genetic components affecting them. A hierarchical model was applied; each individual had a growth trajectory described by the nonlinear function, and each parameter of this function was considered to be affected by genetic and environmental effects that were described by an animal model. Random samples of the posterior distributions were drawn using Gibbs sampling and Metropolis-Hastings algorithms. The data set consisted of a total of 145,961 BW recorded from 15,386 animals. Even though the curve parameters were estimated for animals with few records, given that the information from related animals and the structure of systematic effects were considered in the curve fitting, all mature BW predicted were suitable. A large additive genetic variance for mature BW was observed. The parameter a of growth curves, which represents asymptotic adult BW, could be used as a selection criterion to control increases in adult BW when selecting for growth rate. The effect of maternal environment on growth was carried through to maturity and should be considered when evaluating adult BW. Other growth curve parameters showed small additive genetic and maternal effects. Mature BW and parameter k, related to the slope of the curve, presented a large, positive genetic correlation. The results indicated that selection for growth rate would increase adult BW without substantially changing the shape of the growth curve. Selection to change the slope of the growth curve without modifying adult BW would be inefficient because their genetic correlation is large. However, adult BW could be considered in a selection index with its corresponding economic weight to improve the overall efficiency of beef cattle production.
Resumo:
Approximately 795,000 new and recurrent strokes occur each year. Because of the resulting functional impairment, stroke survivors are often discharged into the care of a family caregiver, most often their spouse. This dissertation explored the effect that mutuality, a measure of the perceived positive aspects of the caregiving relationship, had on the stress and depression of 159 stroke survivors and their spousal caregivers over the first 12 months post discharge from inpatient rehabilitation. Specifically, cross-lagged regression was utilized to investigate the dyadic, longitudinal relationship between caregiver and stroke survivor mutuality and caregiver and stroke survivor stress over time. Longitudinal meditational analysis was employed to examine the mediating effect of mutuality on the dyads’ perception of family function and caregiver and stroke survivor depression over time.^ Caregivers’ mutuality was found to be associated with their own stress over time but not the stress of the stroke survivor. Caregivers who had higher mutuality scores over the 12 months of the study had lower perceived stress. Additionally, a partner effect of stress for the stroke survivor but not the caregiver was found, indicating that stroke survivors’ stress over time was associated with caregivers’ stress but caregivers’ stress over time was not significantly associated with the stress of the stroke survivor.^ This dissertation did not find mutuality to mediate the relationship between caregivers’ and stroke survivors’ perception of family function at baseline and their own or their partners’ depression at 12 months as hypothesized. However, caregivers who perceived healthier family functioning at baseline and stroke survivors who had higher perceived mutuality at 12 months had lower depression at one year post discharge from inpatient rehabilitation. Additionally, caregiver mutuality at 6 months, but not at baseline or 12 months, was found to be inversely related to caregiver depression at 12 months.^ These findings highlight the interpersonal nature of stress in the context of caregiving, especially among spousal relationships. Thus, health professionals should encourage caregivers and stroke survivors to focus on the positive aspects of the caregiving relationship in order to mitigate stress and depression. ^
Resumo:
In this dissertation, we propose a continuous-time Markov chain model to examine the longitudinal data that have three categories in the outcome variable. The advantage of this model is that it permits a different number of measurements for each subject and the duration between two consecutive time points of measurements can be irregular. Using the maximum likelihood principle, we can estimate the transition probability between two time points. By using the information provided by the independent variables, this model can also estimate the transition probability for each subject. The Monte Carlo simulation method will be used to investigate the goodness of model fitting compared with that obtained from other models. A public health example will be used to demonstrate the application of this method. ^
Resumo:
To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naïve patients, and 10 heavily pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were infected by HIV-2 group A. 61.4% of the integrase residues were conserved, including the catalytic motif residues. No INSTI-major resistance mutations were detected in the virus population from naïve patients, but two amino acids that are secondary resistance mutations to INSTIs in HIV-1 were observed. The 10 raltegravir-experienced patients exhibited resistance mutations via three main genetic pathways: N155H, Q148R, and eventually E92Q - T97A. The 155 pathway was preferentially used (7/10 patients). Other mutations associated to raltegravir resistance in HIV-1 were also observed in our HIV-2 population (V151I and D232N), along with several novel mutations previously unreported. Data retrieved from this study should help build a more robust HIV-2-specific algorithm for the genotypic interpretation of raltegravir resistance, and contribute to improve the clinical monitoring of HIV-2-infected patients.
Resumo:
The aim of this paper is to analyse the impact of university knowledge and technology transfer activities on academic research output. Specifically, we study whether researchers with collaborative links with the private sector publish less than their peers without such links, once controlling for other sources of heterogeneity. We report findings from a longitudinal dataset on researchers from two engineering departments in the UK between 1985 until 2006. Our results indicate that researchers with industrial links publish significantly more than their peers. Academic productivity, though, is higher for low levels of industry involvement as compared to high levels.
Resumo:
This paper gives a first step toward a methodology to quantify the influences of regulation on short-run earnings dynamics. It also provides evidence on the patterns of wage adjustment adopted during the recent high inflationary experience in Brazil.The large variety of official wage indexation rules adopted in Brazil during the recent years combined with the availability of monthly surveys on labor markets makes the Brazilian case a good laboratory to test how regulation affects earnings dynamics. In particular, the combination of large sample sizes with the possibility of following the same worker through short periods of time allows to estimate the cross-sectional distribution of longitudinal statistics based on observed earnings (e.g., monthly and annual rates of change).The empirical strategy adopted here is to compare the distributions of longitudinal statistics extracted from actual earnings data with simulations generated from minimum adjustment requirements imposed by the Brazilian Wage Law. The analysis provides statistics on how binding were wage regulation schemes. The visual analysis of the distribution of wage adjustments proves useful to highlight stylized facts that may guide future empirical work.
Resumo:
The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretestposttest longitudinal data. In particular, we consider log-normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE-based models may be preferable when the goal is to compare the marginal expected responses.