992 resultados para log reduction


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To examine the ability of silver nano-particles to prevent the growth of Pseudomonas aeruginosa and Staphylococcus aureus in solution or when adsorbed into contact lenses. To examine the ability of silver nano-particles to prevent the growth of Acanthamoeba castellanii. ----- ----- Methods: Etafilcon A lenses were soaked in various concentrations of silver nano-particles. Bacterial cells were then exposed to these lenses, and numbers of viable cells on lens surface or in solution compared to etafilcon A lenses not soaked in silver. Acanthamoeba trophozoites were exposed to silver nano-particles and their ability to form tracks was examined. ----- ----- Results: Silver nano-particle containing lenses reduced bacterial viability and adhesion. There was a dose-dependent response curve, with 10 ppm or 20 ppm silver showing > 5 log reduction in bacterial viability in solution or on the lens surface. For Acanthamoeba, 20 ppm silver reduced the ability to form tracks by approximately 1 log unit. ----- ----- Conclusions: Silver nanoparticles are effective antimicrobial agents, and can reduce the ability of viable bacterial cells to colonise contact lenses once incorporated into the lens.----- ----- Resumen: Objetivos: Examinar la capacidad de las nanopartículas de plata para prevenir el crecimiento de Pseudomonas aeruginosa y Staphylococcus aureus en soluciones para lentes de contacto o cuando éstas las adsorben. Examinar la capacidad de las nanopartículas de plata para prevenir el crecimiento de Acanthamoeba castellanii.----- ----- Métodos: Se sumergieron lentes etafilcon A en diversas concentraciones de nanopartículas de plata. Las células bacterianas fueron posteriormente expuestas a dichas lentes, y se compararon cantidades de células viables en la superficie de la lente o en la solución con las presentes en lentes etafilcon A que no habían sido sumergidas en plata. Trofozoítos de Acanthamoeba fueron expuestos a nanopartículas de plata y se examinó su capacidad para formar quistes.----- ----- Resultados: Las lentes que contienen nanopartículas de plata redujeron la viabilidad bacteriana y la adhesión. Hubo una curva de respuesta dependiente de la dosis, en la que 10 ppm o 20 ppm de plata mostró una reducción logarítmica > 5 en la viabilidad bacteriana tanto en la solución como en la superficie de la lente. Para Acanthamoeba, 20 ppm de plata redujeron la capacidad de formar quistes en aproximadamente 1 unidad logarítmica.----- ----- Conclusiones: Las nanopartículas de plata son agentes antimicrobianos eficaces y pueden reducir la capacidad de células bacterianas viables para colonizar las lentes de contacto una vez que se han incorporado en la lente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

African indigenous foods have received limited research. Most of these indigenous foods are fermented and they form part of the rich nutritional culture of many groups in African countries. The industrialization and commercialisation of these indigenous African fermented foods should be preceded by a thorough scientific knowledge of their processing which can be vital in the elimination of hunger and poverty. This study highlighted emerging developments and the microbiology of cereal-based and cassava-based food products that constitute a major part of the human diet in most African countries. In addition, investigations were also carried out on the coagulant of the Calotropis procera plant used in traditional production of Nigerian Wara cheese and on the effects of adding a nisin producing Lactococcus lactis strain originating from human milk to Nigerian Wara cheese. Fermented cereal-based food such as ogi utilize popular African and readily available grains maize, millet or sorghum as substrates and is popular as a weaning diet in infants. In this study, the bulkiness caused by starch gelatinization was solved by amylase treatments in the investigation on cooked and fermented oat bran porridge. A similar treatment could reduce the viscosity of any cereal porridge. The properties of the Sodom apple leaves (Calotropis procera) extract in cheesemaking were studied. C. procera was affected by monovalent (K+ and Na+) and divalent (Mg2+ and Ca2+) cations during coagulation. The rennet strength of this coagulant was found to be 7 % compared to animal rennet at 35 °C. Increasing the incubation temperature to 70 °C increased the rennet strength 28-fold. The molecular weight of the partially purified protease was determined by SDS-PAGE and was confirmed by Zymography to be approximately 60 kilodaltons. The high proteolytic activity at 70 °C supported the suitability of the protease enzyme as a coagulant in future commercial production of Nigerian Wara cheese. It was also possible to extend the shelf life of Wara cheese by a nisin producing lactic acid bacteria Lactococcus lactis LAC309. The levels of nisin in both whey and curd fractions of Wara were investigated, results showed a 3 log reduction of toxicogenic Bacillus licheniformis spiked on Wara after 3 days. These studies are the first in Finland to promote the advancement of scientific knowledge in African foods. Recognizing these indigenous food products and an efficient transfer of technology from the developed countries to industrialize them are necessary towards a successful realization of the United Nations Millenium Development Program.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photocatalysis using semiconductor catalyst such as TiO2, in presence of UV light, is a promising technique for the inactivation of various microorganisms present in water. In the current study, the photocatalytic inactivation of Escherichia coli bacteria was studied with commercial Degussa Aeroxide TiO2 P25 (Aeroxide) and combustion synthesized TiO2 (CS TiO2) catalysts immobilized on glass slides in presence of UV irradiation. Thin films of the catalyst and polyelectrolytes, poly(allyl amine hydrochloride) and poly(styrene sulfonate sodium salt), were deposited on glass slides by layer by layer (LbL) deposition method and characterized by SEM and AFM imaging. The effect of various parameters, namely, catalyst concentration, surface area and number of bilayers, on inactivation was studied. Maximum inactivation of 8-log reduction in the viable count was observed with 1.227 mg/cm(2) of catalyst loaded slides. With this loading, complete inactivation was observed within 90 min and 75 min of irradiation, for Aeroxide and CS TiO2, respectively. Further increase in the catalyst concentration or increasing number of bilayers had no significant effect on inactivation. The effect of surface area on the inactivation was studied by increasing the number of slides and the inactivation was observed to increase with increasing surface area. It was also observed that the immobilized catalyst slides can be used for several cycles leading to an economic process. The study shows potential application of TiO2, for the inactivation of bacteria, in its fixed form by a simple immobilization technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to determine the effect of sub-lethal challenge with Photodynamic Antimicrobial Chemotherapy (PACT) on the susceptibility of clinical Staphylococcus aureus and Pseudomonas aeruginosa isolates to both PACT and a range of antibiotics used in the treatment of infection caused by these bacteria. Clinical S. aureus and P. aeruginosa isolates were exposed to sub-lethal PACT with meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP) and methylene blue (MB) over a 72 h period. After exposure, susceptibility of surviving organisms to a range of antibiotics was determined and compared with the susceptibility of an untreated control. Surviving bacteria were also exposed to previously lethal photosensitizer-light combinations, to determine if susceptibility to PACT was affected by sub-lethal exposure. Exposure to sub-lethal PACT did not decrease susceptibility to antibiotics with the minimum inhibitory concentrations for 95% and 100% of P. aeruginosa and S. aureus isolates, respectively, within two doubling dilutions of the MIC of the untreated control. Similarly, habituation with sub-lethal PACT did not reduce susceptibility of P. aeruginosa isolates to PACT levels previously determined as lethal. A reduction in susceptibility to PACT following habituation was apparent for two S. aureus isolates with MB and for 1 S. aureus isolate with IMP. However, for two of these three isolates, the log reduction for habituated cells was still greater than 4 log(10). PACT remains an attractive potential treatment for infection caused by these bacteria. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial epiphytes isolated from marine eukaryotes were screened for the production of quorum sensing inhibitory compounds (QSIs). Marine isolate KS8, identified as a Pseudoalteromonas sp., was found to display strong quorum sensing inhibitory (QSI) activity against acyl homoserine lactone (AHL)-based reporter strains Chromobacterium violaceum ATCC 12472 and CV026. KS8 supernatant significantly reduced biofilm biomass during biofilm formation (−63%) and in pre-established, mature P. aeruginosa PAO1 biofilms (−33%). KS8 supernatant also caused a 0.97-log reduction (−89%) and a 2-log reduction (−99%) in PAO1 biofilm viable counts in the biofilm formation assay and the biofilm eradication assay respectively. The crude organic extract of KS8 had a minimum inhibitory concentration (MIC) of 2 mg/mL against PAO1 but no minimum bactericidal concentration (MBC) was observed over the concentration range tested (MBC > 16 mg/mL). Sub-MIC concentrations (1 mg/mL) of KS8 crude organic extract significantly reduced the quorum sensing (QS)-dependent production of both pyoverdin and pyocyanin in P. aeruginosa PAO1 without affecting growth. A combinatorial approach using tobramycin and the crude organic extract at 1 mg/mL against planktonic P. aeruginosa PAO1 was found to increase the efficacy of tobramycin ten-fold, decreasing the MIC from 0.75 to 0.075 µg/mL. These data support the validity of approaches combining conventional antibiotic therapy with non-antibiotic compounds to improve the efficacy of current treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cationic porphyrins have been widely used as photosensitizers (PSs) in the inactivation of microorganisms, both in biofilms and in planktonic forms. However, the application of curcumin, a natural PS, in the inactivation of biofilms, is poorly studied. The objectives of this study were (1) to evaluate and compare the efficiency of a cationic porphyrin tetra (Tetra-Py+-Me) and curcumin in the photodynamic inactivation of biofilms of Pseudomonas spp and the corresponding planktonic form; (2) to evaluate the effect of these PSs in cell adhesion and biofilm maturation. In eradication assays, biofilms of Pseudomonas spp adherent to silicone tubes were subjected to irradiation with white light (180 J cm-2) in presence of different concentrations (5 and 10 μM) of PS. In colonization experiments, solid supports were immersed in cell suspensions, PS was added and the mixture experimental setup was irradiated (864 J cm-2) during the adhesion phase. After transference solid supports to new PS-containing medium, irradiation (2592 J cm-2) was resumed during biofilm maturation. The assays of inactivation of planktonic cells were conducted in cell suspensions added of PS concentrations equivalent to those used in experiments with biofilms. The inactivation of planktonic cells and biofilms (eradication and colonization assays) was assessed by quantification of viable cells after plating in solid medium, at the beginning and at the end of the experiments. The results show that porphyrin Tetra-Py+-Me effectively inactivated planktonic cells (3.7 and 3.0 log) and biofilms of Pseudomonas spp (3.2 and 3.6 log). In colonization assays, the adhesion of cells was attenuated in 2.2 log, and during the maturation phase, a 5.2 log reduction in the concentration of viable cells was observed. Curcumin failed to cause significant inactivation in planktonic cells (0.7 and 0.9 log) and for that reason it was not tested in biofilm eradication assays. In colonization assays, curcumin did not affect the adhesion of cells to the solid support and caused a very modest reduction (1.0 log) in the concentration of viable cells during the maturation phase. The results confirm that the photodynamic inactivation is a promising strategy to control installed biofilms and in preventing colonization. Curcumin, however, does not represent an advantageous alternative to porphyrins in the case of biofilms of Pseudomonas spp.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction : La chronicité de la rhinosinusite, sa résistance aux antibiotiques, et ses exacerbations aiguës laissent croire que les biofilms sont impliqués dans la rhinosinusite chronique. Objectifs : Nous avons évalué la capacité des bactéries Pseudomonas aeruginosa, staphylocoques à coagulase négative et Staphylococcus aureus à former des biofilms par un essai in vitro, et si cette capacité de formation a un lien avec l’évolution de la maladie. Nous avons évalué in vitro l’effet de la moxifloxacine, un antibiotique utilisé dans le traitement de la rhinosinusite chronique sur des biofilms matures de Staphylococcus aureus. Méthodes : Trent et une souches bactériennes ont été isolées de 19 patients atteints de rhinosinusite chronique et qui ont subit au moins une chirurgie endoscopique des sinus. L’évolution de la maladie a été notée comme "bonne" ou "mauvaise" selon l’évaluation du clinicien. La production de biofilm a été évaluée grâce à la coloration au crystal violet. Nous avons évalué la viabilité du biofilm après traitement avec la moxifloxacine. Ces résultats ont été confirmés en microscopie confocale à balayage laser et par la coloration au LIVE/DEAD BacLight. Résultat et Conclusion : Vingt deux des 31 souches ont produit un biofilm. La production d’un biofilm plus importante chez Pseudomonas aeruginosa et Staphylococcus aureus était associée à une mauvaise évolution. Ceci suggère un rôle du biofilm dans la pathogenèse de la rhinosinusite chronique. Le traitement avec la moxifloxacine, à une concentration de 1000X la concentration minimale inhibitrice réduit le nombre des bactéries viables de 2 à 2.5 log. Ces concentrations (100 µg/ml - 200 µg/ml) sont faciles à atteindre dans des solutions topiques. Les résultats de notre étude suggèrent que l’utilisation de concentrations supérieure à la concentration minimale inhibitrice sous forme topique peut ouvrir des voies de recherche sur de nouveaux traitements qui peuvent être bénéfiques pour les patients atteints de forme sévère de rhinosinusite chronique surtout après une chirurgie endoscopique des sinus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We determined the stability of infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) suspended in either fish processing plant effluent blood water (EBW) or culture media and examined the effectiveness of UVC radiation to inactivate IHNV and VHSV suspended in both solutions. Without exposure to UVC, IHNV and VHSV were maintained in 4°C blood water for up to 48 hours without significant reduction in virus titer. However when exposed to UVC radiation using a low pressure mercury vapour lamp collimated beam, IHNV and VHSV were inactivated, and the efficacy of UVC radiation was dependent upon the solution and virus type being treated. A 3-log reduction for VHSV and IHNV in culture media was achieved at 3.28 and 3.84 mJ cm-2, respectively. The UV dose needed for a 3-log reduction of VHSV in EBW was 3.82 mJ cm-2. However, exposure of IHNV in EBW to the maximum UVC dose tested (4.0 mJ cm-2) only led to a 2.26-log-reduction. Factors such as particle size, and possible association of viruses with suspended EBW particulate, were not investigated in this study, but may have contributed to the difference in UVC effectiveness. Future work should emphasize improved filtration methods prior to UV treatment of processing plant EBW at an industrial scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fresh produce is increasingly implicated in food-related illnesses. Escherichia coli can survive in soil and water and can be transferred onto plant surfaces through farm management practices such as irrigation. A trial was conducted to evaluate the impact of field conditions on E. coli persistence on iceberg lettuce irrigated with contaminated water, and the impact of plant injury on the persistence of E. coli. Lettuce heads were injured at 14, 7, 3, 2, 1, and 0 days before inoculation, with uninjured heads used as a control. All lettuce heads (including controls) were overhead irrigated with a mixture of nonpathogenic E. coli strains (10^sup 7^ CFU/ml). E. coli counts were measured on the day of inoculation and 5 days after, and E. coli was detected on all lettuce head samples. Injury immediately prior to inoculation and harvest significantly (P = 0.00067) increased persistence of E. coli on lettuce plants. Harsh environmental conditions (warm temperatures, limited rainfall) over 5 days resulted in a 2.2-log reduction in E. coli counts on uninjured lettuce plants, and lettuce plants injured more than 2 days prior to inoculation had similar results. Plants with more recent injuries (up to 2 days prior to inoculation) had significantly (P = 7.6 × 10^sup -6^) greater E. coli persistence. Therefore, growers should postpone contaminated water irrigation of lettuce crops with suspected injuries for a minimum of 2 days, or if unavoidable, use the highest microbiological quality of water available, to minimize food safety risks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study was conducted to develop an integrated process lethality model for pressure-assisted thermal processing (PATP) taking into consideration the lethal contribution of both pressure and heat on spore inactivation. Assuming that the momentary inactivation rate was dependent on the survival ratio and momentary pressure-thermal history, a differential equation was formulated and numerically solved using the Runge-Kutta method. Published data on combined pressure-heat inactivation of Bacillus amyloliquefaciens spores were used to obtain model kinetic parameters that considered both pressure and thermal effects. The model was experimentally validated under several process scenarios using a pilot-scale high-pressure food processor. Using first-order kinetics in the model resulted in the overestimation of log reduction compared to the experimental values. When the n th-order kinetics was used, the computed accumulated lethality and the log reduction values were found to be in reasonable agreement with the experimental data. Within the experimental conditions studied, spatial variation in process temperature resulted up to 3.5 log variation in survivors between the top and bottom of the carrier basket. The predicted log reduction of B. amyloliquefaciens spores in deionized water and carrot purée had satisfactory accuracy (1.07-1.12) and regression coefficients (0.83-0.92). The model was also able to predict log reductions obtained during a double-pulse treatment conducted using a pilot-scale high-pressure processor. The developed model can be a useful tool to examine the effect of combined pressure-thermal treatment on bacterial spore lethality and assess PATP microbial safety. © 2013 Springer Science+Business Media New York.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salmonella enterica serovar Enteritidis-lysing bacteriophages isolated from poultry or human sewage sources were used to reduce Salmonella Enteritidis in vitro and in experimentally infected chicks. Cocktails of 4 different bacteriophages obtained from commercial broiler houses (CB4O) and 45 bacteriophages from a municipal wastewater treatment plant (WT45O) were evaluated. In experiment 1, an in vitro crop assay was conducted with selected bacteriophage concentrations (105 to 101 pfu/mL) to determine ability to reduce Salmonella Enteritidis in the simulated crop environment. Following 2 h at 37 degrees C, CB40 or WT45O reduced Salmonella Enteritidis recovery by 1.5 or 5 log, respectively, as compared with control. However, CB40 did not affect total SE recovery after 6 h, whereas WT45O resulted in up to a 6-log reduction of Salmonella Enteritidis. In experiment 2, day-of-hatch chicks were challenged orally with 3 x 103 cfu /chick Salmonella Enteritidis and treated cloacally with 1 X 109 WT45O pfu/chick I h postchallenge. One hour later, chicks were treated or not with a commercially available probiotic (Floramax-B11). Both treatments significantly reduced Salmonella Enteritidis recovery from cecal tonsils at 24 h following vent lip application as compared with controls, but no additive effect was observed with the combination of bacteriophages and probiotic. In experiment 3, day-of-hatch chicks were challenged orally with 9 x 103 cfu/chick Salmonella Enteritidis and treated via oral gavage with I X 108 CB40 pfu/chick, 1.2 x 108 WT45O pfu/chick, or a combination of both, I h postchallenge. All treatments significantly reduced Salmonella Enteritidis recovered from cecal tonsils at 24 h as compared with untreated controls, but no significant differences were observed at 48 h following treatment. These data suggest that some bacteriophages can be efficacious in reducing SE colonization in poultry during a short period, but with the bacteriophages and methods presently tested, persistent reductions were not observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Staphylococcus epidermidis is an organism commonly associated with infections caused by biofilms. Biofilms are less sensible to antibiotics and therefore are more difficult to eradicate. Linezolid and N-acetylcysteine (NAC), have demonstrated to be active against gram-positive microorganisms. Therefore and since linezolid and NAC have different modes of action, the main objective of this work was to investigate the single and synergistic effect of linezolid and NAC against S. epidermidis biofilms. Methods: This work reports the in vitro effect of linezolid and NAC against S. epidermidis biofilms, treated with MIC (4 mg ml-1) and 10×MIC of NAC, and MIC (1 μg ml-1) and peak serum concentration (PS = 18 μg ml-1) of linezolid alone and in combination. After exposure of S. epidermidis biofilms to linezolid and/or NAC for 24 h, several biofilm parameters were evaluated, namely the number of cultivable cells [colony forming unit (CFU) enumeration], total biofilm biomass and cellular activity. Results: When tested alone, NAC at 10×MIC was the most effective agent against S. epidermidis biofilms. However, the combination linezolid (MIC) + NAC (10×MIC) showed a synergistic effect and was the most biocidal treatment tested, promoting a 5 log reduction in the number of biofilm viable cells. Conclusion: This combination seems to be a potential candidate to combat infections caused by S. epidermidis biofilms, namely as a catheter lock solution therapy. © 2012 Elsevier España, S.L. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Candida albicans is classified into different serotypes according to cell wall mannan composition and cell surface hydrophobicity. Since the effectiveness of photodynamic therapy (PDT) depends on the cell wall structure of microorganisms, the objective of this study was to compare the sensitivity of in vitro biofilms of C. albicans serotypes A and B to antimicrobial PDT. Reference strains of C. albicans serotype A (ATCC 36801) and serotype B (ATCC 36802) were used for the assays. A gallium-aluminum-arsenide laser (660 nm) was used as the light source and methylene blue (300 mu M) as the photosensitizer. After biofilm formation on the bottom of a 96-well microplate for 48 h, each Candida strain was submitted to assays: PDT consisting of laser and photosensitizer application (L + P+), laser application alone (L + P-), photosensitizer application alone (L-P+), and application of saline as control (L-P-). After treatment, biofilm cells were scraped off and transferred to tubes containing PBS. The content of the tubes was homogenized, diluted, and seeded onto Sabouraud agar plates to determine the number of colony-forming units (CFU/mL). The results were compared by analysis of variance and Tukey test (p < 0.05). The two strains studied were sensitive to PDT (L + P+), with a log reduction of 0.49 for serotype A and of 2.34 for serotype B. Laser application alone only reduced serotype B cells (0.53 log), and the use of the photosensitizer alone had no effect on the strains tested. It can be concluded that in vitro biofilms of C. albicans serotype B were more sensitive to PDT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)