949 resultados para local rennin-angiotensin system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. This study addressed the role of the local renin-angiotensin system (RAS) in the left ventriular hypertropy (LVH) induced by swimming training using pharmacological blockade. Materials and methods. Female Wistar rats treated with enalapril maleate (60 mg.kg(-1).d(-1), n = 38), losartan (20 mg.kg(-1).d(-1), n = 36) or high salt diet (1% NaCl, n = 38) were trained by two protocols (T1: 60-min swimming session, 5 days per week for 10 weeks and T2: the same T1 protocol until the 8(th) week, then 9(th) week they trained twice a day and 10(th) week they trained three times a day). Salt loading prevented activation of the systemic RAS. Haemodynamic parameters, soleus citrate synthase (SCS) activity and LVH (left ventricular/body weight ratio, mg/g) were evaluated. Results. Resting heart rate decreased in all trained groups. SCS activity increased 41% and 106% in T1 and T2 groups, respectively. LVH was 20% and 30% in T1 and T2 groups, respectively. Enalapril prevented 39% of the LVH in T2 group (p < 0.05). Losartan prevented 41% in T1 and 50% in T2 (P < 0.05) of the LVH in trained groups. Plasma renin activity (PRA) was inhibited in all salt groups and it was increased in T2 group. Conclusions. These data provide evidence that the physiological LVH induced by swimming training is regulated by local RAS independent from the systemic, because the hypertrophic response was maintained even when PRA was inhibited by chronic salt loading. However, other systems can contribute to this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The systemic renin-angiotensin system (RAS) promotes the plasmatic production of angiotensin (Ang) II, which acts through interaction with specific receptors. There is growing evidence that local systems in various tissues and organs are capable of generating angiotensins independently of circulating RAS. The aims of this study were to investigate the expression and localization of RAS components in rat gingival tissue and evaluate the in vitro production of Ang II and other peptides catalyzed by rat gingival tissue homogenates incubated with different Ang II precursors. Methods: Reverse transcription - polymerase chain reaction assessed mRNA expression. Immunohistochemical analysis aimed to detect and localize renin. A standardized fluorimetric method with tripeptide hippuryl-histidyl-leucine was used to measure tissue angiotensin-converting enzyme (ACE) activity, whereas high performance liquid chromatography showed products formed after the incubation of tissue homogenates with Ang I or tetradecapeptide renin substrate (TDP). Results: mRNA for renin, angiotensinogen, ACE, and Ang II receptors (AT(1a), AT(1b), and AT(2)) was detected in gingival tissue; cultured gingival fibroblasts expressed renin, angiotensinogen, and AT(1a) receptor. Renin was present in the vascular endothelium and was intensely expressed in the epithelial basal layer of periodontally affected gingival tissue. ACE activity was detected (4.95 +/- 0.89 nmol histidyl-leucine/g/minute). When Ang I was used as substrate, Ang 1-9 (0.576 +/- 0.128 nmol/mg/minute), Ang II (0.066 +/- 0.008 nmol/mg/minute), and Ang 1-7 (0.111 +/- 0.017 nmol/mg/minute) were formed, whereas these same peptides (0.139 +/- 0.031, 0.206 +/- 0.046, and 0.039 +/- 0.007 nmol/mg/minute, respectively) and Ang 1 (0.973 +/- 0.139 nmol/mg/minute) were formed when TDP was the substrate. Conclusion: Local RAS exists in rat gingival tissue and is capable of generating Ang II and other vasoactive peptides in vitro. J Periodontol 2009;80:130-139.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to mercury at nanomolar level affects cardiac function but its effects on vascular reactivity have yet to be investigated. Pressor responses to phenylephrine (PHE) were investigated in perfused rat tail arteries before and after treatment with 6 nM HgCl2 during 1 h,,in the presence (E+) and absence (E-) of endothelium, after L-NAME (10(-4) M), indomethacin (10(-5) M), enalaprilate (1 mu M), tempol (1 mu M) and deferoxamine (300 mu M) treatments. HgCl2 increased sensitivity (pD(2)) without modifying the maximum response (Em) to PHE, but the pD(2) increase was abolished after endothelial damage. L-NAME treatment increased pD(2) and Emax. However, in the presence of HgCl2, this increase was smaller, and it did not modify Emax. After indomethacin treatment, the increase of pD(2) induced by HgCl2 was maintained. Enalaprilate, tempol and deferoxamine reversed the increase of pD(2) evoked by HgCl2. HgCl2 increased the angiotensin converting enzyme (ACE) activity explaining the result obtained with enalaprilate. Results suggest that at nanomolar concentrations HgCl2 increase the vascular reactivity to PHE. This response is endothelium mediated and involves the reduction of NO bioavailability and the action of reactive oxygen species. The local ACE participates in mercury actions and depends on the angiotensin 11 generation. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sympathetic hyperactivity (SH) and renin angiotensin system (RAS) activation are commonly associated with heart failure (HF), even though the relative contribution of these factors to the cardiac derangement is less understood. The role of SH on RAS components and its consequences for the HF were investigated in mice lacking alpha(2A) and alpha(2C) adrenoceptor knockout (alpha(2A)/alpha(2C) ARKO) that present SH with evidence of HF by 7 mo of age. Cardiac and systemic RAS components and plasma norepinephrine (PN) levels were evaluated in male adult mice at 3 and 7 mo of age. In addition, cardiac morphometric analysis, collagen content, exercise tolerance, and hemodynamic assessments were made. At 3 mo, alpha(2A)/alpha(2C)ARKO mice showed no signs of HF, while displaying elevated PN, activation of local and systemic RAS components, and increased cardiomyocyte width (16%) compared with wild-type mice (WT). In contrast, at 7 mo, alpha(2A)/alpha(2C)ARKO mice presented clear signs of HF accompanied only by cardiac activation of angiotensinogen and ANG II levels and increased collagen content (twofold). Consistent with this local activation of RAS, 8 wk of ANG II AT(1) receptor blocker treatment restored cardiac structure and function comparable to the WT. Collectively, these data provide direct evidence that cardiac RAS activation plays a major role underlying the structural and functional abnormalities associated with a genetic SH-induced HF in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac hypertrophy is associated with altered expression of the components of the cardiac renin-angiotensin system (RAS). While in vitro data suggest that local mechanical stimuli serve as important regulatory modulators of cardiac RAS activity, no in vivo studies have so far corroborated these observations. The aims of this study were to (i) examine the respective influence of local, mechanical versus systemic, soluble factors on the modulation of cardiac RAS gene expression in vivo; (ii) measure gene expression of all known components of the RAS simultaneously; and (iii) establish sequence information and an assay system for the RAS of the dog, one of the most important model organisms in cardiovascular research. We therefore examined a canine model of right ventricular hypertrophy and failure (RVHF) in which the right ventricle (RV) is hemodynamically loaded, the left ventricle (LV) is hemodynamically unloaded, while both are exposed to the same circulating milieu of soluble factors. Using specific competitive PCR assays, we found that RVHF was associated with significant increases in RV mRNA levels of angiotensin converting enzyme and angiotensin II type 2 receptor, and with significant decreases of RV expression of chymase and the angiotensin II type 1 receptor, while RV angiotensinogen and renin remained unchanged. All components remained unchanged in the LV. We conclude that (i) dissociated regional regulation of RAS components in RV and LV indicates modulation by local, mechanical, not soluble, systemic stimuli; (ii) components of the cardiac RAS are independently and differentially regulated; and (iii) opposite changes in the expression of angiotensin converting enzyme and chymase, and of angiotensin II type I and angiotensin II type 2 receptors, may indicate different physiological roles of these RAS components in RVHF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Association between hypertension and bladder symptoms has been described. We hypothesized that micturition dysfunction may be associated with renin-angiotensin system (RAS) acting in urethra. The effects of the anti-hypertensive drugs losartan (AT1 antagonist) and captopril (angiotensin-converting enzyme inhibitor) in comparison with atenolol (β1-adrenoceptor antagonist independently of RAS blockade) have been investigated in bladder and urethral dysfunctions during renovascular hypertension in rats. Two kidney-1 clip (2K-1C) rats were treated with losartan (30 mg/kg/day), captopril (50mg/kg/day) or atenolol (90 mg/kg/day) for eight weeks. Cystometric study, bladder and urethra smooth muscle reactivities, measurement of cAMP levels and p38 MAPK phosphorylation in urinary tract were determined. Losartan and captopril markedly reduced blood pressure in 2K-1C rats. The increases in non-voiding contractions, voiding frequency and bladder capacity in 2K-1C rats were prevented by treatments with both drugs. Likewise, losartan and captopril prevented the enhanced bladder contractions to electrical-field stimulation (EFS) and carbachol, along with the impaired relaxations to β-adrenergic-cAMP stimulation. Enhanced neurogenic contractions and impaired nitrergic relaxations were observed in urethra from 2K-1C rats. Angiotensin II also produced greater urethral contractions that were accompanied by higher phosphorylation of p38 MAPK in urethral tissues of 2K-1C rats. Losartan and captopril normalized the urethral dysfunctions in 2K-1C rats. In contrast, atenolol treatment largely reduced the blood pressure in 2K-1C rats but failed to affect the urinary tract smooth muscle dysfunction. The urinary tract smooth muscle dysfunction in 2K-1C rats takes place by local RAS activation irrespective of levels of arterial blood pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Spontaneously hypertensive rats develop left ventricular hypertrophy, increased blood pressure and blood pressure variability, which are important determinants of heart damage, like the activation of renin-angiotensin system. AIMS: To investigate the effects of the time-course of hypertension over 1) hemodynamic and autonomic patterns (blood pressure; blood pressure variability; heart rate); 2) left ventricular hypertrophy; and 3) local and systemic Renin-angiotensin system of the spontaneously hypertensive rats. METHODS: Male spontaneously hypertensive rats were randomized into two groups: young (n=13) and adult (n=12). Hemodynamic signals (blood pressure, heart rate), blood pressure variability (BPV) and spectral analysis of the autonomic components of blood pressure were analyzed. LEFT ventricular hypertrophy was measured by the ratio of LV mass to body weight (mg/g), by myocyte diameter (μm) and by relative fibrosis area (RFA, %). ACE and ACE2 activities were measured by fluorometry (UF/min), and plasma renin activity (PRA) was assessed by a radioimmunoassay (ng/mL/h). Cardiac gene expressions of Agt, Ace and Ace2 were quantified by RT-PCR (AU). RESULTS: The time-course of hypertension in spontaneously hypertensive rats increased BPV and reduced the alpha index in adult spontaneously hypertensive rats. Adult rats showed increases in left ventricular hypertrophy and in RFA. Compared to young spontaneously hypertensive rats, adult spontaneously hypertensive rats had lower cardiac ACE and ACE2 activities, and high levels of PRA. No change was observed in gene expression of Renin-angiotensin system components. CONCLUSIONS: The observed autonomic dysfunction and modulation of Renin-angiotensin system activity are contributing factors to end-organ damage in hypertension and could be interacting. Our findings suggest that the management of hypertensive disease must start before blood pressure reaches the highest stable levels and the consequent established end-organ damage is reached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Tissue Renin-Angiotensin System activity is increased in obesity and may contribute to obesity-related hypertension and metabolic abnormalities. This open-label pilot study investigated the local effects of Aliskiren in adipose tissue and skeletal muscle.Methods: After a 1-2 week washout, 10 patients with hypertension and abdominal obesity received placebo for 2 weeks, then Aliskiren 300 mg once daily for 4 weeks, followed by a 4-week washout period and then another 4 weeks treatment period with Amlodipine 5 mg once daily. Drug concentrations and Renin-Angiotensin Systembiomarkers were measured in interstitial fluid employing the microdialysis zero-flow method, and in biopsies from abdominal subcutaneous adipose and skeletal muscle.Results: After 4 weeks treatment, microdialysate concentrations (mean±SD) of Aliskiren were 2.4±2.1 ng/ml in adipose tissue, and 7.1±4.2 ng/ml in skeletal muscle. These concentrations were similar to the mean plasma concentration of 8.4±4.4 ng/ml. Tissue concentrations (ng/g) of Aliskiren were 29.0±16.7 ng/g in adipose tissue, and 107.3±68.6 ng/g in skeletal muscle after 4 weeks treatment. Angiotensin II concentrations in microdialysates were below the lower limit of quantification in most patients, but pooled data from two patients suggested that Angiotensin II was reduced by Aliskiren and unchanged by Amlodipine. Aliskiren 300 mg significantly reduced mean plasma Renin activity by 68% and Angiotensin II by 61% (p<0.05 vs. baseline). Amlodipine 5 mg increased plasma Renin activity by 48% (p<0.05 vs. baseline), and non-significantly increased Angiotensin II by 60%. Both treatments increased plasma Renin concentration.Conclusion: Aliskiren 300 mg once daily penetrates adipose and skeletal muscle tissue at concentrations sufficient to reduce tissue Renin-Angiotensin System activity in obese patients with hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac hypertrophy is frequent in chronic hypertension. The renin-angiotensin system, via its effector angiotensin II (Ang II), regulates blood pressure and participates in sustaining hypertension. In addition, a growing body of evidence indicates that Ang II acts also as a growth factor. However, it is still a matter of debate whether the trophic effect of Ang II can trigger cardiac hypertrophy in the absence of elevated blood pressure. To address this question, transgenic mice overexpressing the rat angiotensinogen gene, specifically in the heart, were generated to increase the local activity of the renin-angiotensin system and therefore Ang II production. These mice develop myocardial hypertrophy without signs of fibrosis independently from the presence of hypertension, demonstrating that local Ang II production is important in mediating the hypertrophic response in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To investigate the effects of swimming training on the renin-angiotensin system (RAS) during the development of hypertensive disease. Main methods: Male spontaneously hypertensive rats (SHR) were randomized into: sedentary young (SY), trained young (TV), sedentary adult (SA), and trained adult (TA) groups. Swimming was performed 5 times/wk/8wks. Key findings: Trained young and adult rats showed both decreased systolic and mean blood pressure, and bradycardia after the training protocol. The left ventricular hypertrophy (LVH) was observed only in the TA group (12.7%), but there was no increase on the collagen volume fraction. Regarding the components of the RAS, TV showed lower activity and gene expression of angiotensinogen (AGT) compared to SY. The TA group showed lower activity of circulatory RAS components, such as decreased serum ACE activity and plasma renin activity compared to SA. However, depending on the age, although there were marked differences in the modulation of the RAS by training, both trained groups showed a reduction in circulating angiotensin II levels which may explain the lower blood pressure in both groups after swimming training. Significance: Swimming training regulates the RAS differently in adult and young SHR rats. Decreased local cardiac RAS may have prevented the LVH exercise-induced in the TV group. Both groups decreased serum angiotensin II content, which may, at least in part, contribute to the lowering blood pressure effect of exercise training. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidences suggest a role of renin-angiotensin system (RAS) in the development of chronic allograft injury. We correlated intrarenal angiotensin-converting enzyme, angiotensin II (Angio II) and transforming growth factor β1 (TGFβ1) expression in 58 biopsies-proven chronic allograft nephropathy (CAN) with tissue injury and allograft survival. The biopsies with CAN were graded according to Banff classification as I (22 cases), II (17) and III (19); 27 biopsies also showed a mononuclear inflammatory infiltrate in scarred areas. There were increased expression of angiotensin converting-enzyme (ACE), Angio II and TGFβ1 mainly in tubulointerstitial compartment in the group with CAN; there was no association of Angio II and TGFβ1 expression with interstitial fibrosis. There were no significant differences of ACE, Angio II and TGFβ1 expression between the patients treated and untreated with RAS blockade, and with the graft outcome. Interstitial inflammatory infiltrate had positive correlation with interstitial fibrosis and significant impact on graft survival at 8 years. Our study showed in a group of cases with CAN a high percentage of inflammatory infiltrate that correlated with interstitial fibrosis and graft outcome. The chronic inflammatory changes in these cases did not show significant association with local RAS expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Obesity and renin angiotensin system (RAS) hyperactivity are profoundly involved in cardiovascular diseases, however aerobic exercise training (EXT) can prevent obesity and cardiac RAS activation. The study hypothesis was to investigate whether obesity and its association with EXT alter the systemic and cardiac RAS components in an obese Zucker rat strain. Methods: The rats were divided into the following groups: Lean Zucker rats (LZR); lean Zucker rats plus EXT (LZR+EXT); obese Zucker rats (OZR) and obese Zucker rats plus EXT (OZR+EXT). EXT consisted of 10 weeks of 60-min swimming sessions, 5 days/week. At the end of the training protocol heart rate (HR), systolic blood pressure (SBP), cardiac hypertrophy (CH) and function, local and systemic components of RAS were evaluated. Also, systemic glucose, triglycerides, total cholesterol and its LDL and HDL fractions were measured. Results: The resting HR decreased (, 12%) for both LZR+EXT and OZR+EXT. However, only the LZR+EXT reached significance (p, 0.05), while a tendency was found for OZR versus OZR+EXT (p = 0.07). In addition, exercise reduced (57%) triglycerides and (61%) LDL in the OZR+EXT. The systemic angiotensin I-converting enzyme (ACE) activity did not differ regardless of obesity and EXT, however, the OZR and OZR+EXT showed (66%) and (42%), respectively, less angiotensin II (Ang II) plasma concentration when compared with LZR. Furthermore, the results showed that EXT in the OZR prevented increase in CH, cardiac ACE activity, Ang II and AT2 receptor caused by obesity. In addition, exercise augmented cardiac ACE2 in both training groups. Conclusion: Despite the unchanged ACE and lower systemic Ang II levels in obesity, the cardiac RAS was increased in OZR and EXT in obese Zucker rats reduced some of the cardiac RAS components and prevented obesity-related CH. These results show that EXT prevented the heart RAS hyperactivity and cardiac maladaptive morphological alterations in obese Zucker rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blood-borne renin-angiotensin system (RAS) is known best for its role in the maintenance of blood pressure and electrolyte and fluid homeostasis. However, numerous tissues show intrinsic angiotensin-generating systems that cater for specific local needs through actions that add to, or differ from, the circulating RAS. The male reproductive system has several sites of intrinsic RAS activity. Recent focus on the epididymis, by our laboratories and by others, has contributed important details about the local RAS in this tissue. The RAS components have been localized morphologically and topographically; they have been shown to be responsive to androgens and to hypoxia; and angiotensin has been shown to influence tubular, and consequently, fluid secretion. Components of the RAS have also been found in the testis, vas deferens, prostate and semen. Angiotensin II receptors, type 1 and, to a lesser extent, type 2 are widespread, and angiotensin IV receptors have been localized in the prostate. The roles of the RAS in local processes at these sites are still uncertain and have yet to be fully elucidated, although there is evidence for involvement in tubular contractility, spermatogenesis, sperm maturation, capacitation, acrosomal exocytosis and fertilization. Notwithstanding this evidence for the involvement of the RAS in various important aspects of male reproduction, there has so far been a lack of clinical evidence, demonstrable by changes in fertility, for a crucial role of the RAS in male reproduction. However, it is clear that there are several potential targets for manipulating the activity of the male reproductive system by interfering with the locally generated angiotensin systems.