949 resultados para load support capacity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of fiber reinforced plastics has increased in the last decades due to their unique properties. Advantages of their use are related with low weight, high strength and stiffness. Drilling of composite plates can be carried out in conventional machinery with some adaptations. However, the presence of typical defects like delamination can affect mechanical properties of produced parts. In this paper delamination influence in bearing stress of drilled hybrid carbon+glass/epoxy quasi-isotropic plates is studied by using image processing and analysis techniques. Results from bearing test show that damage minimization is an important mean to improve mechanical properties of the joint area of the plate. The appropriateness of the image processing and analysis techniques used in the measurement of the damaged area is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimation of soil load-bearing capacity from mathematical models that relate preconsolidation pressure (σp) to mechanical resistance to penetration (PR) and gravimetric soil water content (U) is important for defining strategies to prevent compaction of agricultural soils. Our objective was therefore to model the σp and compression index (CI) according to the PR (with an impact penetrometer in the field and a static penetrometer inserted at a constant rate in the laboratory) and U in a Rhodic Eutrudox. The experiment consisted of six treatments: no-tillage system (NT); NT with chiseling; and NT with additional compaction by combine traffic (passing 4, 8, 10, and 20 times). Soil bulk density, total porosity, PR (in field and laboratory measurements), U, σp, and CI values were determined in the 5.5-10.5 cm and 13.5-18.5 cm layers. Preconsolidation pressure (σp) and CI were modeled according to PR in different U. The σp increased and the CI decreased linearly with increases in the PR values. The correlations between σp and PR and PR and CI are influenced by U. From these correlations, the soil load-bearing capacity and compaction susceptibility can be estimated by PR readings evaluated in different U.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT The expansion of the sugarcane industry in Brazil has intensified the mechanization of agriculture and caused effects on the soil physical quality. The purpose of this study was to evaluate the limiting water range and soil bearing capacity of a Latossolo Vermelho distroférrico típico (Rhodic Hapludox) under the influence of different tractor-trailers used in mechanical sugarcane harvesting. The experiment was arranged in a randomized block design with five replications. The treatments consisted of green sugarcane harvesting with: harvester without trailer (T1); harvester with two trailers with a capacity of 10 Mg each (T2); harvester with trailer with a capacity of 20 Mg (T3) and harvester and truck with trailer with a capacity of 20 Mg (10 Mg per compartment) (T4). The least limiting water range and soil bearing capacity were evaluated. The transport equipment to remove the harvested sugarcane from the field (trailer) at harvest decreased the least limiting water range, reducing the structural soil quality. The truck trailer caused the greatest impact on the soil physical properties studied. The soil load bearing capacity was unaffected by the treatments, since the pressure of the harvester (T1) exceeded the pre-consolidation pressure of the soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of conveying practice demonstrates that belt conveyors provide a versatile and. much-used method of transporting bulk materials, but a review of belting manufacturers' design procedures shows that belt design and selection rules are often based on experience with all-cotton belts no longer in common use, and are net completely relevant to modern synthetic constructions. In particular, provision of the property "load support", which was not critical with cotton belts, is shown to determine the outcome of most belt selection exercises and lead to gross over specification of other design properties in many cases. The results of an original experimental investigation into this property, carried out to determine the belt and conveyor parameters that affect it, how the major role that belt stiffness plays in its provision; the basis for a belt stiffness test relevant to service conditions is given. A proposal for a more rational method of specifying load support data results from the work, but correlation of the test results with service performance is necessary before the absolute toad support capability required from a belt for given working conditions can be quantified. A study to attain this correlation is the major proposal for future work resulting from the present investigation, but a full review of the literature on conveyor design and a study of present practice within the belting industry demonstrate other, less critical, factors that could profitably be investigated. It is suggested that the most suitable method of studying these would be a rational data collection system to provide information on various facets of belt service behaviour; a basis for such a system is proposed. In addition to the work above, proposals for simplifying the present belt selection methods are made and a strain transducer suitable for use in future experimental investigations is developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to quantify the effect of plonk on compressive behavior and mechanical attributes such as consistency, optimum moisture for compaction and maximum density of a Red-Yellow Latosol (Oxisol) to evaluate the effect of plonk and compaction state in splashed particles, from Lavras (MG) region. The plonk was obtained from an artisanal sugarcane brandy alembic. Undisturbed and disturbed soil samples were collected at 0 to 3 cm and 60 to 63 cm depths. Disturbed soil samples were used for soil characterization, determination of consistence limits and Normal Proctor essay after material incubation with plonk. Undisturbed soil samples were saturated with plonk or distilled water (control) during 48 hours for testing the compressibility and resistance to splash by using simulated rainfall. The plonk altered the consistence limits of studied layers. For the 0-3 cm layer, the plonk reduced the friable range, and for the 60-63 cm layer the effect was in the opposite direction. For both layers, the plonk increased Dmax and decreased Uoptimum. Regardless of the plonk treatment, both layers presented the same load support capacity. The compaction degree of samples influenced the splash erosion. The increase of the applied pressure over the samples resulted in increase of splash material quantity. At the 60-63 cm layer, the plonk treatment reduced the splash material quantity by increasing the applied pressure, mainly when the samples were at field capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In agriculture, the soil strength is used to describe the susceptibility to deformation by pressure caused by agricultural machine. The purpose of this study was to compare different methods for estimating the inherent soil strength and to identify their suitability for the evaluation of load support capacity, compaction susceptibility and root growth. The physical, chemical, mineralogical and intrinsic strength properties of seven soil samples, collected from five sampling pits at different locations in Brazil, were measured. Four clay (CS) and three sandy clay loam (SCL) soils were used. The clay soils were collected on a farm in Santo Ângelo, RS (28 º 16 ' 16 '' S; 54 º 13 ' 11 '' W 290 m); A and B horizons at the Universidade Federal de Lavras, Lavras, MG (21 º 13 ' 47 '' S; 44 º 58 ' 6'' W; 918 m) and on the farm Sygenta, in Uberlandia, MG (18 º 58 ' 37 '' S; 48 º 12 ' 05 '' W 866 m). The sandy clay loam soils were collected in Aracruz, ES (19 º 47 ' 10 '' S; 40 º 16 ' 29 '' W 81 m), and on the farm Xavier, Lavras, MG (21 º 13 ' 24 '' S; 45 º 05 ' 00 '' W; 844 m). Soil strength was estimated based on measurements of: (a) a pneumatic consolidometer, (b) manual pocket (non-rotating) penetrometer; and (c) automatic (rotating) penetrometer. The results of soil strength properties were similar by the three methods. The soil structure had a significant influence on soil strength. Results of measurements with both the manual pocket and the electric penetrometer were similar, emphasizing the influence of soil texture. The data showed that, to enhance the reliability of predictions of preconsolidation pressure by penetrometers, it is better to separate the soils into the different classes, rather than analyze them jointly. It can be concluded that the consolidometer method, although expensive, is the best when evaluations of load support capacity and compaction susceptibility of soil samples are desired.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of soils in Environmental Protection Areas (EPAs) are of great importance, because they are an essential component of ecosystems, directly interfering in environmental sustainability. The objective of this study was to evaluate the structural quality of soil cultivated with coffee and used as pasture in the Capituva's River microbasin, which is located in the Environmental Protection Area in Coqueiral, south of the state of Minas Gerais. Uniaxial compression test (preconsolidation test) and soil resistance to penetration were used. Undisturbed samples were taken from the surface layer (0-5 cm) of the soils in the area: a typic dystrophic Red Latosol (LVd - Oxisol), a typic eutrophic Red Argisol (PVe - Ultisol), and a typic dystrophic Haplic Cambisol (CXbd - Inceptisol). A significant linear positive correlation was observed between the results of the preconsolidation test and soil resistance to penetration. Load bearing capacity of soil could be estimated accordingly by means of penetration resistance for LVd, PVe, and CXbd. Cambisol - CXbd showed lower loading support capacity and resistance to penetration than LVd and PVe, due to the better crop management in this soil that resulted in higher physical quality which accounts for higher production and environmental sustainability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os efeitos do tráfego de máquinas nos atributos do solo de acordo com o tempo de adoção do sistema plantio direto são ainda pouco pesquisados em ambientes tropicais, e muitas dúvidas ainda persistem sobre a variação dinâmica da estrutura do solo e a sua interação com máquinas e equipamentos. Objetivou-se com este estudo avaliar o efeito do tempo de adoção do sistema plantio direto, comparativamente com área de mata nativa e de preparo convencional, usando os modelos de compressibilidade do solo. O estudo foi realizado em um Nitossolo Vermelho distroférrico, sob mata nativa (MN), preparo convencional (PC), plantio direto com um ano (PD1), plantio direto com quatro anos (PD4), plantio direto com cinco anos (PD5) e plantio direto com 12 anos (PD12). Amostras indeformadas e deformadas foram coletadas em duas profundidades (0-5 e 10-15 cm). O tempo de adoção do sistema plantio direto alterou o comportamento compressivo dos solos em ambas as profundidades, por meio das mudanças na pressão de preconsolidação. A profundidade de 0-5 cm apresentou menor capacidade de suporte de carga do que a profundidade de 10-15 cm. A profundidade de 0-5 cm, em todos os sistemas de manejo, mostrou-se mais susceptível à compactação em relação à profundidade de 10-15 cm. Os sistemas de plantio direto e convencional apresentaram a capacidade de suporte de carga crescente na seguinte ordem: PD5 < PD12 < PD1 < PD4 @ PC, para a profundidade de 0-5 cm e para a profundidade de 10-15 cm: MN @ PD12 < PC @ PD4 < PD5, enquanto o sistema PD1 apresentou comportamento diferenciado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O principal problema ambiental causado pelo uso do solo em áreas de preservação permanente longitudinais aos rios é a supressão da mata ciliar. O tipo e a intensidade desse uso alteram a estrutura do solo e comprometem as funções físicas dessas áreas, principalmente próximo aos cursos d'água. O objetivo deste trabalho foi avaliar a sustentabilidade estrutural, a partir do ensaio de compressão uniaxial, de três classes de solo (Cambissolo Háplico, Argissolo Amarelo e Gleissolo Háplico) e o impacto de diferentes tipos de usos do solo - não permitido pela legislação ambiental - de áreas de preservação permanente na sub-bacia do rio Ribeira de Iguape, SP. Foram delimitadas na área experimental três classes de solo: Cambissolo, Argissolo e Gleissolo. Numa primeira etapa, compararam-se as três classes de solos sob mata nativa e sob pastagem. Na segunda, avaliou-se a influência de diferentes tipos de uso do solo - cultivo de banana, pastagem degradada, uso silvipastoril e mata nativa - sobre a estrutura de um Cambissolo. A pressão de preconsolidação mostrou-se ferramenta capaz de identificar a degradação nos solos. O uso do solo nas áreas de preservação permanente altera a pressão de preconsolidação do solo, causando sua degradação estrutural, colocando em risco a sustentabilidade das terras, e não deve ser permitido. O Gleissolo mostrou maiores valores de pressão de preconsolidação em função de teores crescentes de água e, portanto, maior capacidade de suporte de carga em relação ao Cambissolo e Argissolo. O cultivo de banana foi o tipo de uso que mais degradou os solos das áreas de preservação permanente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to model and diagnose the spatial variability of soil load support capacity (SLSC) in sugar cane crop fields, as well as to evaluate the management impact on São Paulo State soil structure. The investigated variables were: pressure preconsolidation (sigma(p)), apparent cohesion () and internal friction angle (). The conclusions from the results were that the models and spatial dependence maps constitute important tools in the prediction and location of the mechanical internal strength of soils cultivated with sugar cane. They will help future soil management decisions so that soil structure sustainability will not be compromised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to determine the load support capacity (LSC) of an Oxisol and, through compressibility models, relate it to wheel-soil interactions under management systems with one and three sugarcane crop cycles, with mechanized harvest. LSC evaluations were carried out on undisturbed soil samples, collected at planting row and bed, in four layers: 0.00-0.10, 0.10-0.20, 0.20-0.30, and 0.300.40 m. The contact area between wheels and soil was determined in order to estimate the contact pressure by agricultural machinery on the soil. Pre-consolidation pressures were used to determine LSC. The system with three cycles showed higher LSC than the system with only one cycle. The load support capacity of the soil evaluated in the range of friability is greater than the contact pressures applied to the soil by the wheels of the studied agricultural machines.