872 resultados para load profiling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Load balancing is often used to ensure that nodes in a distributed systems are equally loaded. In this paper, we show that for real-time systems, load balancing is not desirable. In particular, we propose a new load-profiling strategy that allows the nodes of a distributed system to be unequally loaded. Using load profiling, the system attempts to distribute the load amongst its nodes so as to maximize the chances of finding a node that would satisfy the computational needs of incoming real-time tasks. To that end, we describe and evaluate a distributed load-profiling protocol for dynamically scheduling time-constrained tasks in a loosely-coupled distributed environment. When a task is submitted to a node, the scheduling software tries to schedule the task locally so as to meet its deadline. If that is not feasible, it tries to locate another node where this could be done with a high probability of success, while attempting to maintain an overall load profile for the system. Nodes in the system inform each other about their state using a combination of multicasting and gossiping. The performance of the proposed protocol is evaluated via simulation, and is contrasted to other dynamic scheduling protocols for real-time distributed systems. Based on our findings, we argue that keeping a diverse availability profile and using passive bidding (through gossiping) are both advantageous to distributed scheduling for real-time systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-speed networks, such as ATM networks, are expected to support diverse Quality of Service (QoS) constraints, including real-time QoS guarantees. Real-time QoS is required by many applications such as those that involve voice and video communication. To support such services, routing algorithms that allow applications to reserve the needed bandwidth over a Virtual Circuit (VC) have been proposed. Commonly, these bandwidth-reservation algorithms assign VCs to routes using the least-loaded concept, and thus result in balancing the load over the set of all candidate routes. In this paper, we show that for such reservation-based protocols|which allow for the exclusive use of a preset fraction of a resource's bandwidth for an extended period of time-load balancing is not desirable as it results in resource fragmentation, which adversely affects the likelihood of accepting new reservations. In particular, we show that load-balancing VC routing algorithms are not appropriate when the main objective of the routing protocol is to increase the probability of finding routes that satisfy incoming VC requests, as opposed to equalizing the bandwidth utilization along the various routes. We present an on-line VC routing scheme that is based on the concept of "load profiling", which allows a distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. We show the effectiveness of our load-profiling approach when compared to traditional load-balancing and load-packing VC routing schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To support the diverse Quality of Service (QoS) requirements of real-time (e.g. audio/video) applications in integrated services networks, several routing algorithms that allow for the reservation of the needed bandwidth over a Virtual Circuit (VC) established on one of several candidate routes have been proposed. Traditionally, such routing is done using the least-loaded concept, and thus results in balancing the load across the set of candidate routes. In a recent study, we have established the inadequacy of this load balancing practice and proposed the use of load profiling as an alternative. Load profiling techniques allow the distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. In this paper we thoroughly characterize the performance of VC routing using load profiling and contrast it to routing using load balancing and load packing. We do so both analytically and via extensive simulations of multi-class traffic routing in Virtual Path (VP) based networks. Our findings confirm that for routing guaranteed bandwidth flows in VP networks, load balancing is not desirable as it results in VP bandwidth fragmentation, which adversely affects the likelihood of accepting new VC requests. This fragmentation is more pronounced when the granularity of VC requests is large. Typically, this occurs when a common VC is established to carry the aggregate traffic flow of many high-bandwidth real-time sources. For VP-based networks, our simulation results show that our load-profiling VC routing scheme performs better or as well as the traditional load-balancing VC routing in terms of revenue under both skewed and uniform workloads. Furthermore, load-profiling routing improves routing fairness by proactively increasing the chances of admitting high-bandwidth connections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents load profiles of electricity customers, using the knowledge discovery in databases (KDD) procedure, a data mining technique, to determine the load profiles for different types of customers. In this paper, the current load profiling methods are compared using data mining techniques, by analysing and evaluating these classification techniques. The objective of this study is to determine the best load profiling methods and data mining techniques to classify, detect and predict non-technical losses in the distribution sector, due to faulty metering and billing errors, as well as to gather knowledge on customer behaviour and preferences so as to gain a competitive advantage in the deregulated market. This paper focuses mainly on the comparative analysis of the classification techniques selected; a forthcoming paper will focus on the detection and prediction methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The majority of distribution utilities do not have accurate information on the constituents of their loads. This information is very useful in managing and planning the network, adequately and economically. Customer loads are normally categorized in three main sectors: 1) residential; 2) industrial; and 3) commercial. In this paper, penalized least-squares regression and Euclidean distance methods are developed for this application to identify and quantify the makeup of a feeder load with unknown sectors/subsectors. This process is done on a monthly basis to account for seasonal and other load changes. The error between the actual and estimated load profiles are used as a benchmark of accuracy. This approach has shown to be accurate in identifying customer types in unknown load profiles, and is used in cross-validation of the results and initial assumptions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates: - correlation between transit route passenger loading and travel distance - its implications on quality of service (QoS) and resource productivity. It uses Automatic Fare Collection (AFC) data across a weekday on a premium bus line in Brisbane, Australia. A composite load-distance factor is proposed as a new measure for profiling transit route on-board passenger comfort QoS. Understanding these measures and their correlation is important for planning, design, and operational activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates quality of service and resource productivity implications of transit route passenger loading and travel distance. Weekday Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate correlation between load factor and distance factor. Relationships between boardings and transit work indicate that distance factor generally increases with load factor. Time series analysis is then presented by examining each direction on an hour by hour basis. Inbound correlation is medium to strong across the entire span of service and strong for daytime services up to 19:30, while outbound correlation is strong across the entire span. Passengers tend to be making longer distance, peak direction commuter trips under the least comfortable conditions under stretched peak schedules than off-peak. Therefore productivity gains may be possible by adjusting fleet utilization during off-peak times. Weekday profiles by direction are established for a composite load-distance factor. A threshold corresponding to standing passengers on the Maximum Load Segment reveals that on-board loading and travel distance combined are more severe during the morning inbound peak than evening outbound peak, although the sharpness of the former suggests that encouraging shoulder peak travel during the morning would be more effective than evening peak. Further research suggested includes: consideration of travel duration factor, relating noise within hour to Peak Hour Factor, profiling load-distance factor across a range of case studies, and relating load-distance factor threshold to line length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is an attempt to study crack initiation in nuclear grade, 9Cr-1Mo ferritic steel using AE as an online NDE tool. Laboratory experiments were conducted on 5 heat treated Compact Tension (CT) specimens made out of nuclear grade 9Cr-1Mo ferritic steel by subjecting them to cyclic tensile load. The CT Specimens were of 12.5 mm thickness. The Acoustic emission test system was setup to acquire the data continuously during the test by mounting AE sensor on one of the surfaces of the specimen. This was done to characterize AE data pertaining to crack initiation and then discriminate the samples in terms of their heat treatment processes based on AE data. The AE signatures at crack initiation could conclusively bring to fore the heat treatment distinction on a sample to sample basis in a qualitative sense.Thus, the results obtained through these investigations establish a step forward in utilizing AE technique as an on-line measurement tool for accurate detection and understanding of crack initiation and its profile in 9Cr-1Mo nuclear grade steel subjected to different processes of heat treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic Engineering has been the prime concern for Internet Service Providers (ISPs), with the main focus being minimization of over-utilization of network capacity even though additional capacity is available which is under-utilized, Furthermore, requirements of timely delivery of digitized audiovisual information raises a new challenge of finding a path meeting these requirements. This paper addresses the issue of (a) distributing load to achieve global efficiency in resource utilization. (b) Finding a path satisfying the real time requirements of, delay and bandwidth requested by the applications. In this paper we do a critical study of the link utilization that varies over time and determine the time interval during which the link occupancy remains constant across days. This information helps in pre-determining link utilization that is useful in balancing load in the network Finally, we run simulations that use a dynamic time interval for profiling traffic and show improvement in terms number of calls admitted/blocked.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To check the effectiveness of campaigns preventing drug abuse or indicating local effects of efforts against drug trafficking, it is beneficial to know consumed amounts of substances in a high spatial and temporal resolution. The analysis of drugs of abuse in wastewater (WW) has the potential to provide this information. In this study, the reliability of WW drug consumption estimates is assessed and a novel method presented to calculate the total uncertainty in observed WW cocaine (COC) and benzoylecgonine (BE) loads. Specifically, uncertainties resulting from discharge measurements, chemical analysis and the applied sampling scheme were addressed and three approaches presented. These consist of (i) a generic model-based procedure to investigate the influence of the sampling scheme on the uncertainty of observed or expected drug loads, (ii) a comparative analysis of two analytical methods (high performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry), including an extended cross-validation by influent profiling over several days, and (iii) monitoring COC and BE concentrations in WW of the largest Swiss sewage treatment plants. In addition, the COC and BE loads observed in the sewage treatment plant of the city of Berne were used to back-calculate the COC consumption. The estimated mean daily consumed amount was 107 ± 21 g of pure COC, corresponding to 321 g of street-grade COC.