989 resultados para load demand


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Creating a set of a number of neural network (NN) models in an ensemble and accumulating them can achieve better overview capability as compared to single neural network. Neural network ensembles are designed to provide solutions to particular problems. Many researchers and academicians have adopted this NN ensemble technique, especially in machine learning, and has been applied in various fields of engineering, medicine and information technology. This paper present a robust aggregation methodology for load demand forecasting based on Bayesian Model Averaging of a set of neural network models in an ensemble. This paper estimate a vector of coefficient for individual NN models' forecasts using validation data-set. These coefficients, also known as weights, are equal to posterior probabilities of the models generating the forecasts. These BMA weights are then used in combining forecasts generated from NN models with test data-set. By comparing the Bayesian results with the Simple Averaging method, it was observed that benefits are obtained by utilizing an advanced method like BMA for forecast combinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical load forecasting plays a vital role in order to achieve the concept of next generation power system such as smart grid, efficient energy management and better power system planning. As a result, high forecast accuracy is required for multiple time horizons that are associated with regulation, dispatching, scheduling and unit commitment of power grid. Artificial Intelligence (AI) based techniques are being developed and deployed worldwide in on Varity of applications, because of its superior capability to handle the complex input and output relationship. This paper provides the comprehensive and systematic literature review of Artificial Intelligence based short term load forecasting techniques. The major objective of this study is to review, identify, evaluate and analyze the performance of Artificial Intelligence (AI) based load forecast models and research gaps. The accuracy of ANN based forecast model is found to be dependent on number of parameters such as forecast model architecture, input combination, activation functions and training algorithm of the network and other exogenous variables affecting on forecast model inputs. Published literature presented in this paper show the potential of AI techniques for effective load forecasting in order to achieve the concept of smart grid and buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel design of interval type-2 fuzzy logic systems (IT2FLS) by utilizing the theory of extreme learning machine (ELM) for electricity load demand forecasting. ELM has become a popular learning algorithm for single hidden layer feed-forward neural networks (SLFN). From the functional equivalence between the SLFN and fuzzy inference system, a hybrid of fuzzy-ELM has gained attention of the researchers. This paper extends the concept of fuzzy-ELM to an IT2FLS based on ELM (IT2FELM). In the proposed design the antecedent membership function parameters of the IT2FLS are generated randomly, whereas the consequent part parameters are determined analytically by the Moore-Penrose pseudo inverse. The ELM strategy ensures fast learning of the IT2FLS as well as optimality of the parameters. Effectiveness of the proposed design of IT2FLS is demonstrated with the application of forecasting nonlinear and chaotic data sets. Nonlinear data of electricity load from the Australian National Electricity Market for the Victoria region and from the Ontario Electricity Market are considered here. The proposed model is also applied to forecast Mackey-glass chaotic time series data. Comparative analysis of the proposed model is conducted with some traditional models such as neural networks (NN) and adaptive neuro fuzzy inference system (ANFIS). In order to verify the structure of the proposed design of IT2FLS an alternate design of IT2FLS based on Kalman filter (KF) is also utilized for the comparison purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the electricity load demand behavior during the 2001 rationing period, which was implemented because of the Brazilian energetic crisis. The hourly data refers to a utility situated in the southeast of the country. We use the model proposed by Soares and Souza (2003), making use of generalized long memory to model the seasonal behavior of the load. The rationing period is shown to have imposed a structural break in the series, decreasing the load at about 20%. Even so, the forecast accuracy is decreased only marginally, and the forecasts rapidly readapt to the new situation. The forecast errors from this model also permit verifying the public response to pieces of information released regarding the crisis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Probabilistic load flow techniques have been adopted in AC electrified railways to study the load demand under various train service conditions. This paper highlights the differences in probabilistic load flow analysis between the usual power systems and power supply systems in AC railways; discusses the possible difficulties in problem formulation and presents the link between train movement and the corresponding power demand for load flow calculation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With the current increase of energy resources prices and environmental concerns intelligent load management systems are gaining more and more importance. This paper concerns a SCADA House Intelligent Management (SHIM) system that includes an optimization module using deterministic and genetic algorithm approaches. SHIM undertakes contextual load management based on the characterization of each situation. SHIM considers available generation resources, load demand, supplier/market electricity price, and consumers’ constraints and preferences. The paper focus on the recently developed learning module which is based on artificial neural networks (ANN). The learning module allows the adjustment of users’ profiles along SHIM lifetime. A case study considering a system with fourteen discrete and four variable loads managed by a SHIM system during five consecutive similar weekends is presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Demand response is an energy resource that has gained increasing importance in the context of competitive electricity markets and of smart grids. New business models and methods designed to integrate demand response in electricity markets and of smart grids have been published, reporting the need of additional work in this field. In order to adequately remunerate the participation of the consumers in demand response programs, improved consumers’ performance evaluation methods are needed. The methodology proposed in the present paper determines the characterization of the baseline approach that better fits the consumer historic consumption, in order to determine the expected consumption in absent of participation in a demand response event and then determine the actual consumption reduction. The defined baseline can then be used to better determine the remuneration of the consumer. The paper includes a case study with real data to illustrate the application of the proposed methodology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Short Term Load Forecasting (STLF) is very important from the power systems grid operation point of view. STLF involves forecasting load demand in a short term time frame. The short term time frame may consist of half hourly prediction up to weekly prediction. Accurate forecasting would benefit the utility in terms of reliability and stability of the grid ensuring adequate supply is present to meet with the load demand. Apart from that it would also affect the financial performance of the utility company. An accurate forecast would result in better savings while maintaining the security of the grid. This paper outlines the STLF using a novel hybrid online learning neural network, known as the Gaussian Regression (GR). This new hybrid neural network is a combination of two existing online learning neural networks which are the Gaussian Adaptive Resonance Theory (GA) and the Generalized Regression Neural Network (GRNN). Both GA and GRNN implemented online learning, but each of them suffers from limitation. Originally GA is used for unsupervised clustering by compressing the training samples into several categories. A supervised version of GA is available, namely Gaussian ARTMAP (GAM). However, the GAM is still not capable on solving regression problem. On the other hand, GRNN is designed for solving real value estimation (regression) problem, but the learning process would involve of memorizing all training samples, hence high computational cost. The hybrid GR is considered an enhanced version of GRNN with compression ability while still maintains online learning properties. Simulation results show that GR has comparable prediction accuracy and has less prototype as compared to the original GRNN as well as the Support Vector Regression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neural network (NN) models have been widely used in the literature for short-term load forecasting. Their popularity is mainly due to their excellent learning and approximation capability. However, their forecasting performance significantly depends on several factors including initializing parameters, training algorithm, and NN structure. To minimize negative effects of these factors, this paper proposes a practically simple, yet effective and an efficient method to combine forecasts generated by NN models. The proposed method includes three main phases: (i) training NNs with different structures, (ii) selecting best NN models based on their forecasting performance for a validation set, and (iii) combination of forecasts for selected best NNs. Forecast combination is performed through calculating the mean of forecasts generated by best NN models. The performance of the proposed method is examined using real world data set. Comparative studies demonstrate that the accuracy of combined forecasts is significantly superior to those obtained from individual NN models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this research is to examine the efficiency of different aggregation algorithms to the forecasts obtained from individual neural network (NN) models in an ensemble. In this study an ensemble of 100 NN models are constructed with a heterogeneous architecture. The outputs from NN models are combined by three different aggregation algorithms. These aggregation algorithms comprise of a simple average, trimmed mean, and a Bayesian model averaging. These methods are utilized with certain modifications and are employed on the forecasts obtained from all individual NN models. The output of the aggregation algorithms is analyzed and compared with the individual NN models used in NN ensemble and with a Naive approach. Thirty-minutes interval electricity demand data from Australian Energy Market Operator (AEMO) and the New York Independent System Operator's web site (NYISO) are used in the empirical analysis. It is observed that the aggregation algorithm perform better than many of the individual NN models. In comparison with the Naive approach, the aggregation algorithms exhibit somewhat better forecasting performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper studies the electricity hourly load demand in the area covered by a utility situated in the southeast of Brazil. We propose a stochastic model which employs generalized long memory (by means of Gegenbauer processes) to model the seasonal behavior of the load. The model is proposed for sectional data, that is, each hour’s load is studied separately as a single series. This approach avoids modeling the intricate intra-day pattern (load profile) displayed by the load, which varies throughout days of the week and seasons. The forecasting performance of the model is compared with a SARIMA benchmark using the years of 1999 and 2000 as the out-of-sample. The model clearly outperforms the benchmark. We conclude for general long memory in the series.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this dissertation I quantify residential behavior response to interventions designed to reduce electricity demand at different periods of the day. In the first chapter, I examine the effect of information provision coupled with bimonthly billing, monthly billing, and in-home displays, as well as a time-of-use (TOU) pricing scheme to measure consumption over each month of the Irish Consumer Behavior Trial. I find that time-of-use pricing with real time usage information reduces electricity usage up to 8.7 percent during peak times at the start of the trial but the effect decays over the first three months and after three months the in-home display group is indistinguishable from the monthly treatment group. Monthly and bi-monthly billing treatments are not found to be statistically different from another. These findings suggest that increasing billing reports to the monthly level may be more cost effective for electricity generators who wish to decrease expenses and consumption, rather than providing in-home displays. In the following chapter, I examine the response of residential households after exposure to time of use tariffs at different hours of the day. I find that these treatments reduce electricity consumption during peak hours by almost four percent, significantly lowering demand. Within the model, I find evidence of overall conservation in electricity used. In addition, weekday peak reductions appear to carry over to the weekend when peak pricing is not present, suggesting changes in consumer habit. The final chapter of my dissertation imposes a system wide time of use plan to analyze the potential reduction in carbon emissions from load shifting based on the Ireland and Northern Single Electricity Market. I find that CO2 emissions savings are highest during the winter months when load demand is highest and dirtier power plants are scheduled to meet peak demand. TOU pricing allows for shifting in usage from peak usage to off peak usage and this shift in load can be met with cleaner and cheaper generated electricity from imports, high efficiency gas units, and hydro units.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electricity load forecasting has become one of the most functioning tools in energy efficiency and load management and utility companies which has been made very complex due to deregulation. Due to the importance of providing a secure and economic electricty for the consumers, having a reliable and robust enough forecast engine in short-term load management is very needful. Fuzzy inference system is one of primal branches of Artificial Intelligence techniques which has been widely used for different applications of decision making in complex systems. This paper aims to develop a Fuzzy inference system as a main forecast engine for Short term Load Forecasting (STLF) of a city in Iran. However, the optimization of this platform for this special case remains a basic problem. Hence, to address this issue, the Radial Movement Optimization (RMO) technique is proposed to optimize the whole Fuzzy platform. To support this idea, the accuracy of the proposed model is analyzed using MAPE index and an average error of 1.38% is obtained for the forecast load demand which represents the reliability of the proposed method. Finally, results achieved by this method, demonstrate that an adaptive two-stage hybrid system consisting of Fuzzy & RMO can be an accurate and robust enough choice for STLF problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The presence of large number of single-phase distributed energy resources (DERs) can cause severe power quality problems in distribution networks. The DERs can be installed in random locations. This may cause the generation in a particular phase exceeds the load demand in that phase. Therefore the excess power in that phase will be fed back to the transmission network. To avoid this problem, the paper proposes the use of distribution static compensator (DSTATCOM) that needs to be connected at the first bus following a substation. When operated properly, the DSTATCOM can facilitate a set of balanced current flow from the substation, even when excess power is generated by DERs. The proposals are validated through extensive digital computer simulation studies using PSCAD and MATLAB.