975 resultados para liver injury
Resumo:
OBJECTIVE: To optimize the animal model of liver injury that can properly represent the pathological characteristics of dampness-heat jaundice syndrome of traditional Chinese medicine. METHODS: The liver injury in the model rat was induced by alpha-naphthylisothiocyanate (ANIT) and carbon tetrachloride (CCl(4) ) respectively, and the effects of Yinchenhao Decoction (, YCHD), a proved effective Chinese medical formula for treating the dampness-heat jaundice syndrome in clinic, on the two liver injury models were evaluated by analyzing the serum level of alanine aminotransferase (ALT), asparate aminotransferase (AST), alkaline phosphatase (ALP), malondialchehyche (MDA), total bilirubin (T-BIL), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) as well as the ratio of liver weight to body weight. The experimental data were analyzed by principal component analytical method of pattern recognition. RESULTS: The ratio of liver weight to body weight was significantly elevated in the ANIT and CCl(4) groups when compared with that in the normal control (P<0.01). The contents of ALT and T-BIL were significantly higher in the ANIT group than in the normal control (P<0.05,P<0.01), and the levels of AST, ALT and ALP were significantly elevated in CCl(4) group relative to those in the normal control P<0.01). In the YCHD group, the increase in AST, ALT and ALP levels was significantly reduced (P<0.05, P<0.01), but with no significant increase in serum T-BIL. In the CCl(4) intoxicated group, the MDA content was significantly increased and SOD, GSH-PX activities decreased significantly compared with those in the normal control group, respectively (P<0.01). The increase in MDA induced by CCl(4) was significantly reduced by YCHD P<0.05). CONCLUSION: YCHD showed significant effects on preventing liver injury progression induced by CCl(4), and the closest or most suitable animal model for damp-heat jaundice syndrome may be the one induced by CCl(4).
Resumo:
Hepatotoxicity due to overdose of the analgesic and antipyretic acetaminophen (A-PAIP) is a major cause of liver failure in adults. To better understand the contributions of different signaling pathways, the expression and role of Ras activation was evaluated after oral dosing of mice with APAP (400-500 mg/kg). Ras-guanosine triphosphate (GTP) is induced early and in an oxidative stress-dependent manner. The functional role of Ras activation was studied by a single intraperitoneal injection of the neutral sphingomyelinase and farnesyltransferase inhibitor (FTI) manumycin A (I mg/kg), which lowers induction of Ras-GTP and serum amounts of alanine aminotransferase (ALT). APAP dosing decreases hepatic glutathione amounts, which are not affected by manumycin A treatment. However, APAP-induced activation of c-Jun N-terminal kinase, which plays an important role, is reduced by manumycin A. Also, APAP-induced mitochondrial reactive oxygen species are reduced by manumycin A at a later time point during liver injury. Importantly, the induction of genes involved in the inflammatory response (including iNos, gp91phox, and Fasl) and serum amounts of proinflammatory cytokines interferon-gamma (IFN gamma) and tumor necrosis factor alpha, which increase greatly with APAP challenge, are suppressed with manumycin A. The FTI ctivity of manumycin A is most likely involved in reducing APAP-induced liver injury, because a specific neutral sphingomyelinase inhibitor, GW4869 (I mg/kg), did not show any hepatoprotective effect. Notably, a structurally distinct FTI, gliotoxin (I mg/kg), also inhibits Ras activation and reduces serum amounts of ALT and IFN-gamma after APAP dosing. Finally, histological analysis confirmed the hepatoprotective effect f manumycin A and gliotoxin during APAP-induced liver damage. Conclusion: This study identifies a key role for Ras activation and demonstrates the therapeutic efficacy of FTIs during APAP-induced liver injury.
Resumo:
The aim of this study was to evaluate the protective effects of different doses and administration modes of N-acetylcysteine (NAC) against X-ray-induced liver damage in mice. Kun-Ming mice were divided into four groups, each composed of six animals: two control groups and two NAC-treated groups. An acute study was carried out to determine alterations in lipid peroxidation (determined by measuring malondiadehyde (MDA) level), glutathione (GSH) content and superoxide dismutase (SOD) activity (assayed by colorimetric method), and DNA damage (characterized by DNA-single strand break using with comet assay) as well as cell apoptosis (measured by flow cytometry) at 12 h after irradiation. The results showed that there were dose-related decreases in MDA level, DNA damage and cell apoptosis, and dose-dependent increases in GSH content and SOD activity in all NAC-treated groups compared to control groups, indicating that pre-treatment or post-treatment with NAC significantly attenuates the acute liver damage caused by X-ray. In addition, significant positive correlations were observed between MDA level and DNA damage or cell apoptosis, implying that lipid peroxidation plays a major role in X-ray-induced liver injury. The data suggest that NAC exerts its radioprotective effect by counteracting accumulated reactive oxygen species in the liver through its properties as a direct antioxidant and a GSH precursor, when administered before or after X-ray irradiation.
Resumo:
Clozapine, whilst associated commonly with a transient and benign increase in liver enzymes, has also been associated with varying presentations of hepatitis in existing case reports. This report describes what we believe to be the first documented case of acute liver injury and pleural effusion associated with clozapine, resolving after cessation of the agent. The case supports existing literature in advocating a high index of suspicion, particularly in the 4-5 weeks following clozapine initiation, when considering nonspecific clinical symptoms and signs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coffee intake has been inversely related to the incidence of liver diseases, although there are controversies on whether these beneficial effects on human health are because of caffeine or other specific components in this popular beverage. Thus, this study evaluated the protective effects of coffee or caffeine intake on liver injury induced by repeated thioacetamide (TAA) administration in male Wistar rats. Rats were randomized into five groups: one untreated group (G1) and four groups (G2G5) treated with the hepatotoxicant TAA (200 similar to mg/kg b.w., i.p.) twice a week for 8 similar to weeks. Concomitantly, rats received tap water (G1 and G2), conventional coffee (G3), decaffeinated coffee (G4) or 0.1% caffeine (G5). After 8 similar to weeks of treatment, rats were killed and blood and liver samples were collected. Conventional and decaffeinated coffee and caffeine intake significantly reduced serum levels of alanine aminotransferase (ALT) (p similar to<similar to 0.001) and oxidized glutathione (p similar to<similar to 0.05), fibrosis/inflammation scores (p similar to<similar to 0.001), collagen volume fraction (p similar to<similar to 0.01) and transforming growth factor beta-1 (TGF-beta 1) protein expression (p similar to=similar to 0.001) in the liver from TAA-treated groups. In addition, conventional coffee and caffeine intake significantly reduced proliferating cellular nuclear antigen (PCNA) S-phase indexes (p similar to<similar to 0.001), but only conventional coffee reduced cleaved caspase-3 indexes (p similar to<similar to 0.001), active metalloproteinase 2 (p similar to=similar to 0.004) and the number of glutathione S-transferase placental form (GST-P)-positive preneoplastic lesions (p similar to<similar to 0.05) in the liver from TAA-treated groups. In conclusion, conventional coffee and 0.1% caffeine intake presented better beneficial effects than decaffeinated coffee against liver injury induced by TAA in male Wistar rats.
Resumo:
Nonalcoholic fatty liver disease (NAFLD) is a major health problem and a leading cause of chronic liver disease in the United States and developed countries. In humans, genetic factors greatly influence individual susceptibility to NAFLD. The goals of this study were to compare the magnitude of interindividual differences in the severity of liver injury induced by methyl-donor deficiency among individual inbred strains of mice and to investigate the underlying mechanisms associated with the variability. Feeding mice a choline-and folate-deficient diet for 12 wk caused liver injury similar to NAFLD. The magnitude of liver injury varied among the strains, with the order of sensitivity being A/J approximate to C57BL/6J approximate to C3H/HeJ < 129S1/SvImJ approximate to CAST/EiJ < PWK/PhJ < WSB/EiJ. The interstrain variability in severity of NAFLD liver damage was associated with dysregulation of genes involved in lipid metabolism, primarily with a down-regulation of the peroxisome proliferator receptor alpha (PPAR alpha)-regulated lipid catabolic pathway genes. Markers of oxidative stress and oxidative stress-induced DNA damage were also elevated in the livers but were not correlated with severity of liver damage. These findings suggest that the PPAR alpha-regulated metabolism network is one of the key mechanisms determining interstrain susceptibility and severity of NAFLD in mice.-Tryndyak, V., de Conti, A., Kobets, T., Kutanzi, K., Koturbash, I., Han, T., Fuscoe, J. C., Latendresse, J. R., Melnyk, S., Shymonyak, S., Collins, L., Ross, S. A., Rusyn, I., Beland, F. A., Pogribny, I. P. Interstrain differences in the severity of liver injury induced by a choline-and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism. FASEB J. 26, 4592-4602 (2012). www.fasebj.org
Resumo:
In mammalian species, profibrogenic cells are activated to become myofibroblasts in response to liver damage. Few studies have examined hepatic myofibroblasts and their role in liver damage in teleosts. The aim of the present study was to investigate the involvement of myofibroblast-like cells in rainbow trout (Oncorhynchus mykiss) with hepatic damage induced by aflatoxin B1 (AFB1). Histopathological and immunohistochemical analyses characterized alterations in the liver stroma during the carcinogenic process. Anti-human a-smoothmuscle actin (SMA) and anti-human desmin primary antibodies were used in immunohistochemistry. Only the anti-SMA reagent labelled cells in trout liver. In the livers of control fish, only smooth muscle in blood vessels and around bile ducts was labelled. In the livers from AFB1-treated fish, SMA-positive cells were present in the stroma surrounding neoplastic lesions and in areas of desmoplastic reaction. These observations indicate that in teleosts, as in mammals, the myofibroblast-like cell is involved in fibrosis associated with liver injury. Chronic liver injury induced in trout by aflatoxin may provide a useful model system for study of the evolution of such mechanisms.
Resumo:
The activation of heme oxygenase-1 (HO-1) appears to be an endogenous defensive mechanism used by cells to reduce inflammation and tissue damage in a number of injury models. HO-1, a stress-responsive enzyme that catabolizes heme into carbon monoxide (CO), biliverdin and iron, has previously been shown to protect grafts from ischemia/reperfusion and rejection. In addition, the products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin, have been shown to exert protective effects in the liver against a number of stimuli, as in chronic hepatitis C and in transplanted liver grafts. Furthermore, the induction of HO-1 expression can protect the liver against damage caused by a number of chemical compounds. More specifically, the CO derived from HO-1-mediated heme catabolism has been shown to be involved in the regulation of inflammation; furthermore, administration of low concentrations of exogenous CO has a protective effect against inflammation. Both murine and human HO-1 deficiencies have systemic manifestations associated with iron metabolism, such as hepatic overload (with signs of a chronic hepatitis) and iron deficiency anemia (with paradoxical increased levels of ferritin). Hypoxia induces HO-1 expression in multiple rodent, bovine and monkey cell lines, but interestingly, hypoxia represses expression of the human HO-1 gene in a variety of human cell types (endothelial cells, epithelial cells, T cells). These data suggest that HO-1 and CO are promising novel therapeutic molecules for patients with inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 in liver injuries and in particular, we focus on the implications of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against chemically induced injury.
Resumo:
Dietary supplements (DS) are easily available and increasingly used, and adverse hepatic reactions have been reported following their intake. To critically review the literature on liver injury because of DSs, delineating patterns and mechanisms of injury and to increase the awareness towards this cause of acute and chronic liver damage. Studies and case reports on liver injury specifically because of DSs published between 1990 and 2010 were searched in the PubMed and EMBASE data bases using the terms 'dietary/nutritional supplements', 'adverse hepatic reactions', 'liver injury'; 'hepatitis', 'liver failure', 'vitamin A' and 'retinoids', and reviewed for yet unidentified publications. Significant liver injury was reported after intake of Herbalife and Hydroxycut products, tea extracts from Camellia sinensis, products containing usnic acid and high contents of vitamin A, anabolic steroids and others. No uniform pattern of hepatotoxicity has been identified and severity may range from asymptomatic elevations of serum liver enzymes to hepatic failure and death. Exact estimates on how frequent adverse hepatic reactions occur as a result of DSs cannot be provided. Liver injury from DSs mimicking other liver diseases is increasingly recognized. Measures to reduce risk include tighter regulation of their production and distribution and increased awareness of users and professionals of the potential risks.
Resumo:
A recent genome-wide study revealed an association between variation in the PNPLA3 gene and liver fat content. In addition, the PNPLA3 single-nucleotide polymorphism rs738409 (M148I) was reported to be associated with advanced alcoholic liver disease in alcohol-dependent individuals of Mestizo descent. We therefore evaluated the impact of rs738409 on the manifestation of alcoholic liver disease in two independent German cohorts. Genotype and allele frequencies of rs738409 (M148I) were determined in 1,043 alcoholic patients with or without alcoholic liver injury and in 376 at-risk drinkers from a population-based cohort. Relative to alcoholic patients without liver damage (n = 439), rs738409 genotype GG was strongly overrepresented in patients with alcoholic liver cirrhosis (n = 210; OR 2.79; P(genotype) = 1.2 × 10(-5) ; P(allelic) = 1.6 × 10(-6) ) and in alcoholic patients without cirrhosis but with elevated alanine aminotransferase levels (n = 219; OR 2.33; P(genotype) = 0.0085; P(allelic) = 0.0042). The latter, biochemically defined association was confirmed in an independent population-based cohort of at-risk drinkers with a median alcohol intake of 300 g/week (OR 4.75; P(genotype) = 0.040; P(allelic) = 0.022), and for aspartate aminotransferase (AST) levels. Frequencies of allele PNPLA3 rs738409(G) in individuals with steatosis and normal alanine aminotransferase (ALT) and AST levels were lower than in alcoholics without steatosis and normal ALT/AST (P(combined) = 0.03). The population attributable risk of cirrhosis in alcoholic carriers of allele PNPLA3 rs738409(G) was estimated at 26.6%. CONCLUSION: Genotype PNPLA3 rs738409(GG) is associated with alcoholic liver cirrhosis and elevated aminotransferase levels in alcoholic Caucasians.
Resumo:
Connective tissue growth factor (CTGF) is a profibrotic protein whose systemic levels are increased in liver cirrhosis. Here, association of CTGF with stages of liver injury and complications of cirrhotic liver disease has been analyzed in patients with different aetiologies of hepatic injury. CTGF is significantly increased in portal venous serum (PVS), hepatic venous serum (HVS) and systemic venous serum (SVS) of 46 patients with liver cirrhosis compared to eight liver-healthy controls. In patients´ blood samples CTGF in HVS is about 6% higher than PVS levels indicating that CTGF produced in the liver is released to the circulation. CTGF is not associated with stages of liver cirrhosis defined by CHILD-PUGH or MELD score nor with secondary complications of portal hypertension (varices, ascites, spontaneous bacterial peritonitis). Transforming growth factor β (TGFβ) induces CTGF synthesis in hepatocytes and a positive association of systemic TGFβ1 and SVS and HVS CTGF is found. Three months after placing transjugular intrahepatic portosystemic shunt (TIPS) hepatic venous pressure gradient is reduced whereas CHILD-PUGH score, TGFβ1 and CTGF are not altered in serum of 15 patients. Current data show that the cirrhotic liver releases little CTGF but SVS, HVS and PVS CTGF levels are not associated with residual liver function and complications of cirrhosis.
Resumo:
Liver diseases represent an important cause of morbidity and mortality in the world. Death of hepatocytes and other hepatic cell types is a characteristic feature of several forms of liver injury such as cholestasis, viral hepatitis, drug- or toxin-induced injury, and alcohol-induced liver damage. Moreover, irrespectively of the reason, liver injury seems to be facilitated by similar immune effector mechanisms common to these various liver diseases. Indeed, common immune effector mechanisms may explain the high prevalence of cirrhosis and cancer development in most forms of liver disease. Improved understanding of the immune cell-mediated mechanisms involved in hepatocyte cell death could be beneficial for the development of common therapeutic strategies against different forms of liver diseases. In this review, we will discuss novel findings on the role of different immune cells in liver disease and immune cell-induced death executioner mechanisms involved in hepatocyte cell death.