983 resultados para litter trap
Resumo:
This research shows that gross pollutant traps (GPTs) continue to play an important role in preventing visible street waste—gross pollutants—from contaminating the environment. The demand for these GPTs calls for stringent quality control and this research provides a foundation to rigorously examine the devices. A novel and comprehensive testing approach to examine a dry sump GPT was developed. The GPT is designed with internal screens to capture gross pollutants—organic matter and anthropogenic litter. This device has not been previously investigated. Apart from the review of GPTs and gross pollutant data, the testing approach includes four additional aspects to this research, which are: field work and an historical overview of street waste/stormwater pollution, calibration of equipment, hydrodynamic studies and gross pollutant capture/retention investigations. This work is the first comprehensive investigation of its kind and provides valuable practical information for the current research and any future work pertaining to the operations of GPTs and management of street waste in the urban environment. Gross pollutant traps—including patented and registered designs developed by industry—have specific internal configurations and hydrodynamic separation characteristics which demand individual testing and performance assessments. Stormwater devices are usually evaluated by environmental protection agencies (EPAs), professional bodies and water research centres. In the USA, the American Society of Civil Engineers (ASCE) and the Environmental Water Resource Institute (EWRI) are examples of professional and research organisations actively involved in these evaluation/verification programs. These programs largely rely on field evaluations alone that are limited in scope, mainly for cost and logistical reasons. In Australia, evaluation/verification programs of new devices in the stormwater industry are not well established. The current limitations in the evaluation methodologies of GPTs have been addressed in this research by establishing a new testing approach. This approach uses a combination of physical and theoretical models to examine in detail the hydrodynamic and capture/retention characteristics of the GPT. The physical model consisted of a 50% scale model GPT rig with screen blockages varying from 0 to 100%. This rig was placed in a 20 m flume and various inlet and outflow operating conditions were modelled on observations made during the field monitoring of GPTs. Due to infrequent cleaning, the retaining screens inside the GPTs were often observed to be blocked with organic matter. Blocked screens can radically change the hydrodynamic and gross pollutant capture/retention characteristics of a GPT as shown from this research. This research involved the use of equipment, such as acoustic Doppler velocimeters (ADVs) and dye concentration (Komori) probes, which were deployed for the first time in a dry sump GPT. Hence, it was necessary to rigorously evaluate the capability and performance of these devices, particularly in the case of the custom made Komori probes, about which little was known. The evaluation revealed that the Komori probes have a frequency response of up to 100 Hz —which is dependent upon fluid velocities—and this was adequate to measure the relevant fluctuations of dye introduced into the GPT flow domain. The outcome of this evaluation resulted in establishing methodologies for the hydrodynamic measurements and gross pollutant capture/retention experiments. The hydrodynamic measurements consisted of point-based acoustic Doppler velocimeter (ADV) measurements, flow field particle image velocimetry (PIV) capture, head loss experiments and computational fluid dynamics (CFD) simulation. The gross pollutant capture/retention experiments included the use of anthropogenic litter components, tracer dye and custom modified artificial gross pollutants. Anthropogenic litter was limited to tin cans, bottle caps and plastic bags, while the artificial pollutants consisted of 40 mm spheres with a range of four buoyancies. The hydrodynamic results led to the definition of global and local flow features. The gross pollutant capture/retention results showed that when the internal retaining screens are fully blocked, the capture/retention performance of the GPT rapidly deteriorates. The overall results showed that the GPT will operate efficiently until at least 70% of the screens are blocked, particularly at high flow rates. This important finding indicates that cleaning operations could be more effectively planned when the GPT capture/retention performance deteriorates. At lower flow rates, the capture/retention performance trends were reversed. There is little difference in the poor capture/retention performance between a fully blocked GPT and a partially filled or empty GPT with 100% screen blockages. The results also revealed that the GPT is designed with an efficient high flow bypass system to avoid upstream blockages. The capture/retention performance of the GPT at medium to high inlet flow rates is close to maximum efficiency (100%). With regard to the design appraisal of the GPT, a raised inlet offers a better capture/retention performance, particularly at lower flow rates. Further design appraisals of the GPT are recommended.
Resumo:
Gross pollutant traps (GPT) are designed to capture and retain visible street waste, such as anthropogenic litter and organic matter. Blocked screens, low/high downstream tidal waters and flows operating above/below the intended design limits can hamper the operations of a stormwater GPT. Under these adverse operational conditions, a recently developed GPT was evaluated. Capture and retention experiments were conducted on a 50% scale model with partially and fully blocked screens, placed inside a hydraulic flume. Flows were established through the model via an upstream channel-inlet configuration. Floatable, partially buoyant, neutrally buoyant and sinkable spheres were released into the GPT and monitored at the outlet. These experiments were repeated with a pipe-inlet configured GPT. The key findings from the experiments were of practical significance to the design, operation and maintenance of GPTs. These involved an optimum range of screen blockages and a potentially improved inlet design for efficient gross pollutant capture/retention operations. For example, the outlet data showed that the capture and retention efficiency deteriorated rapidly when the screens were fully blocked. The low pressure drop across the retaining screens and the reduced inlet flow velocities were either insufficient to mobilise the gross pollutants, or the GPT became congested.
Resumo:
One of the most commonly used sampling techniques to capture leaf litter amphibians, lizards and small mammals is a set of pitfall traps with drift fences. However, there are still many speculations concerning the effectiveness of different designs of pitfall traps and the most adequate size of each trap. To address this problem, we conducted the first standardized comparison of patterns of species richness, rank-abundance, and community structure of leaf litter amphibians, lizards and small mammals for two trap designs (I and Y format) and three bucket sizes (35, 62, and 100 L) in a Neotropical forest. Results are very similar for the herpetofauna, regardless of the pitfall trap design or size used, while for small mammals values of species richness were higher for 100 L pitfall traps, as compared to the smaller traps. Therefore, the use of 100 L pitfall traps is recommended to sample the terrestrial vertebrate fauna, in multidisciplinary studies. For surveys aiming only the herpetofauna the use of smaller (35 L) traps is acceptable, taking into consideration the cost-benefits obtained by the smaller traps, in comparison to the larger ones.
Resumo:
Field studies show that the internal screens in a gross pollutant trap (GPT) are often clogged with organic matter, due to infrequent cleaning. The hydrodynamic performance of a GPT with fully blocked screens was comprehensively investigated under a typical range of onsite operating conditions. Using an acoustic Doppler velocimeter (ADV), velocity profiles across three critical sections of the GPT were measured and integrated to examine the net fluid flow at each section. The data revealed that when the screens are fully blocked, the flow structure within the GPT radically changes. Consequently, the capture/retention performance of the device rapidly deteriorates. Good agreement was achieved between the experimental and the previous 2D computational fluid dynamics (CFD) velocity profiles for the lower GPT inlet flow conditions.
Resumo:
A technique was developed to investigate the capture/retention characteristic of a gross pollutant trap (GPT) with fully and partially blocked internal screens. Custom modified spheres of variable density filled with liquid were released into the GPT inlet and monitored at the outlet. The outlet data shows that the capture/retention performances of a GPT with fully blocked screens deteriorate rapidly. During higher flow rates, screen blockages below 68% approach maximum efficiency. At lower flow rates, the high performance trend is reversed and the variation in behaviour of pollutants with different densities becomes more noticeable. Additional experiments with a second upstream inlet configured GPT showed an improved capture/retention performance. It was also noted that the bypass allows the incoming pollutants to escape when the GPT is blocked. This useful feature prevents upstream blockages between cleaning intervals.
Resumo:
Dust emissions from large-scale, tunnel-ventilated poultry sheds could have negative health and environmental impacts. Despite this fact, the literature concerning dust emissions from tunnel-ventilated poultry sheds in Australia and overseas is relatively scarce. Dust measurements were conducted during two consecutive production cycles at a single broiler shed on a poultry farm near Ipswich, Queensland. Fresh litter was employed during the first cycle and partially reused litter was employed during the second cycle. This provided an opportunity to study the effect that partial litter reuse has on dust emissions. Dust levels were characterised by the number concentration of suspended particles having diameter between 0.5–20 μm and by the mass concentration of dust particles below 10 μm diameter (PM10) and 2.5 μm diameter (PM2.5). In addition, we measured the number size distributions of dust particles. The average concentration and emission rate of dust was higher when partially reused litter was used in the shed than when fresh litter was used. In addition we found that dust particles emitted from the shed with partially reused litter were finer than the particles emitted with fresh litter. Although the change in litter properties is certainly contributing to this observed variability, other factors such as ventilation rate and litter moisture content are also likely to be involved.
Resumo:
This paper presents a comprehensive review of scientific and grey literature on gross pollutant traps (GPTs). GPTs are designed with internal screens to capture gross pollutants—organic matter and anthropogenic litter. Their application involves professional societies, research organisations, local city councils, government agencies and the stormwater industry—often in partnership. In view of this, the 113 references include unpublished manuscripts from these bodies along with scientific peer-reviewed conference papers and journal articles. The literature reviewed was organised into a matrix of six main devices and nine research areas (testing methodologies) which include: design appraisal study, field monitoring/testing, experimental flow fields, gross pollutant capture/retention characteristics, residence time calculations, hydraulic head loss, screen blockages, flow visualisations and computational fluid dynamics (CFD). When the fifty-four item matrix was analysed, twenty-eight research gaps were found in the tabulated literature. It was also found that the number of research gaps increased if only the scientific literature was considered. It is hoped, that in addition to informing the research community at QUT, this literature review will also be of use to other researchers in this field.
Resumo:
A novel and comprehensive testing approach to examine the performance of gross pollutant traps (GPTs) was developed. A proprietary GPT with internal screens for capturing gross pollutants—organic matter and anthropogenic litter—was used as a case study. This work is the first investigation of its kind and provides valuable practical information for the design, selection and operation of GPTs and also the management of street waste in an urban environment. It used a combination of physical and theoretical models to examine in detail the hydrodynamic and capture/retention characteristics of the GPT. The results showed that the GPT operated efficiently until at least 68% of the screens were blocked, particularly at high flow rates. At lower flow rates, the high capture/retention performance trend was reversed. It was also found that a raised inlet GPT offered a better capture/retention performance. This finding indicates that cleaning operations could be more effectively planned in conjunction with the deterioration in GPT’s capture/retention performance.
Resumo:
The main limitations with existing fungal spore traps are that they are stationary and cannot be used in inaccessible or remote areas of Australia. This may result in delayed assessment, possible spread of harmful crop infestations and loss of crop yield and productivity. Fitted with the developed smart spore trap the UAV can fly, detect and monitor spores of plant pathogens in areas which previously were almost impossible to monitor. The technology will allow for earlier detection of emergency plant pests (EPPs) incursions by providing efficient and effective airborne surveillance, helping to protect Australia’s crops, pastures and the environment. The project is led by the Cooperative Research Centre for National Plant Biosecurity, with ARCAA/ QUT, CSIRO and the Queensland Government also providing resources. The prototype airplane was exhibited at the Innovation in Australia event December 7.
Resumo:
Typical flow fields in a stormwater gross pollutant trap (GPT) with blocked retaining screens were experimentally captured and visualised. Particle image velocimetry (PIV) software was used to capture the flow field data by tracking neutrally buoyant particles with a high speed camera. A technique was developed to apply the Image Based Flow Visualization (IBFV) algorithm to the experimental raw dataset generated by the PIV software. The dataset consisted of scattered 2D point velocity vectors and the IBFV visualisation facilitates flow feature characterisation within the GPT. The flow features played a pivotal role in understanding gross pollutant capture and retention within the GPT. It was found that the IBFV animations revealed otherwise unnoticed flow features and experimental artefacts. For example, a circular tracer marker in the IBFV program visually highlighted streamlines to investigate specific areas and identify the flow features within the GPT.
Resumo:
Application of poultry litter (PL) to soil can lead to substantial nitrous oxide (N2O) emissions due to the co-application of labile carbon (C) and nitrogen (N). Slow pyrolysis of PL to produce biochar may mitigate N2O emissions from this source, whilst still providing agronomic benefits. In a corn crop on ferrosol with similarly matched available N inputs of ca. 116 kg N/ha, PL-biochar plus urea emitted significantly less N2O (1.5 kg N2O-N/ha) compared to raw PL at 4.9 kg N2O-N/ha. Urea amendment without the PL-biochar emitted 1.2 kg N2O-N/ha, and the PL-biochar alone emitted only 0.35 kg N2O-N/ha. Both PL and PL-biochar resulted in similar corn yields and total N uptake which was significantly greater than for urea alone. Using stable isotope methodology, the majority (~ 80%) of N2O emissions were shown to be from non-urea sources. Amendment with raw PL significantly increased C mineralisation and the quantity of permanganate oxidisable organic C. The low molar H/C (0.49) and O/C (0.16) ratios of the PL-biochar suggest its higher stability in soil than raw PL. The PL-biochar also had higher P and K fertiliser value than raw PL. This study suggests that PL-biochar is a valuable soil amendment with the potential to significantly reduce emissions of soil greenhouse gases compared to the raw product. Contrary to other studies, PL-biochar incorporated to 100 mm did not reduce N2O emissions from surface applied urea, which suggests that further field evaluation of biochar impacts, and methods of application of both biochar and fertiliser, are needed.
Resumo:
Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.
Resumo:
Abstract An experimental dataset representing a typical flow field in a stormwater gross pollutant trap (GPT) was visualised. A technique was developed to apply the image-based flow visualisation (IBFV) algorithm to the raw dataset. Particle image velocimetry (PIV) software was previously used to capture the flow field data by tracking neutrally buoyant particles with a high speed camera. The dataset consisted of scattered 2D point velocity vectors and the IBFV visualisation facilitates flow feature characterisation within the GPT. The flow features played a pivotal role in understanding stormwater pollutant capture and retention behaviour within the GPT. It was found that the IBFV animations revealed otherwise unnoticed flow features and experimental artefacts. For example, a circular tracer marker in the IBFV program visually highlighted streamlines to investigate the possible flow paths of pollutants entering the GPT. The investigated flow paths were compared with the behaviour of pollutants monitored during experiments.
Resumo:
UV-vis photodissociation action spectroscopy is becoming increasingly prevalent because of advances in, and commercial availability of, ion trapping technologies and tunable laser sources. This study outlines in detail an instrumental arrangement, combining a commercial ion-trap mass spectrometer and tunable nanosecond pulsed laser source, for performing fully automated photodissociation action spectroscopy on gas-phase ions. The components of the instrumentation are outlined, including the optical and electronic interfacing, in addition to the control software for automating the experiment and performing online analysis of the spectra. To demonstrate the utility of this ensemble, the photodissociation action spectra of 4-chloroanilinium, 4-bromoanilinium, and 4-iodoanilinium cations are presented and discussed. Multiple photoproducts are detected in each case and the photoproduct yields are followed as a function of laser wavelength. It is shown that the wavelength-dependent partitioning of the halide loss, H loss, and NH3 loss channels can be broadly rationalized in terms of the relative carbon-halide bond dissociation energies and processes of energy redistribution. The photodissociation action spectrum of (phenyl)Ag-2 (+) is compared with a literature spectrum as a further benchmark.