998 resultados para liquid gas
Resumo:
High-resolution synchrotron x-ray powder diffraction in La(0.7)Ca(0.3)MnO(3) shows in detail a first-order structural phase transition from orthorhombic (space-group Pnma) to rhombohedral (space-group R (3) over barc) crystal structures near T(S)=710 K. Magnetic susceptibility measurements show that the rhombohedral phase strictly obeys the Curie-Weiss law as opposed to the orthorhombic phase. A concomitant change in the electrical resistivity behavior, consistent with an alteration from nonadiabatic to adiabatic small polaron hopping regimes, was also observed at T(S). The simultaneous change in transport and magnetic properties are identified as a transition from a correlated polaron liquid for T
Resumo:
The existence of a liquid-gas phase transition for hot nuclear systems at subsaturation densities is a well-established prediction of finite-temperature nuclear many-body theory. In this paper, we discuss for the first time the properties of such a phase transition for homogeneous nuclear matter within the self-consistent Green's function approach. We find a substantial decrease of the critical temperature with respect to the Brueckner-Hartree-Fock approximation. Even within the same approximation, the use of two different realistic nucleon-nucleon interactions gives rise to large differences in the properties of the critical point.
Resumo:
We study the effects of a repulsive three-body interaction on a system of trapped ultracold atoms in a Bose-Einstein condensed state. The stationary solutions of the corresponding s-wave nonlinear Schrödinger equation suggest a scenario of first-order liquid-gas phase transition in the condensed state up to a critical strength of the effective three-body force. The time evolution of the condensate with feeding process and three-body recombination losses has a different characteristic pattern. Also, the decay time of the dense (liquid) phase is longer than expected due to strong oscillations of the mean-squared radius.
Resumo:
Gas-liquid mass transfer is an important issue in the design and operation of many chemical unit operations. Despite its importance, the evaluation of gas-liquid mass transfer is not straightforward due to the complex nature of the phenomena involved. In this thesis gas-liquid mass transfer was evaluated in three different gas-liquid reactors in a traditional way by measuring the volumetric mass transfer coefficient (kLa). The studied reactors were a bubble column with a T-junction two-phase nozzle for gas dispersion, an industrial scale bubble column reactor for the oxidation of tetrahydroanthrahydroquinone and a concurrent downflow structured bed.The main drawback of this approach is that the obtained correlations give only the average volumetric mass transfer coefficient, which is dependent on average conditions. Moreover, the obtained correlations are valid only for the studied geometry and for the chemical system used in the measurements. In principle, a more fundamental approach is to estimate the interfacial area available for mass transfer from bubble size distributions obtained by solution of population balance equations. This approach has been used in this thesis by developing a population balance model for a bubble column together with phenomenological models for bubble breakage and coalescence. The parameters of the bubble breakage rate and coalescence rate models were estimated by comparing the measured and calculated bubble sizes. The coalescence models always have at least one experimental parameter. This is because the bubble coalescence depends on liquid composition in a way which is difficult to evaluate using known physical properties. The coalescence properties of some model solutions were evaluated by measuring the time that a bubble rests at the free liquid-gas interface before coalescing (the so-calledpersistence time or rest time). The measured persistence times range from 10 msup to 15 s depending on the solution. The coalescence was never found to be instantaneous. The bubble oscillates up and down at the interface at least a coupleof times before coalescence takes place. The measured persistence times were compared to coalescence times obtained by parameter fitting using measured bubble size distributions in a bubble column and a bubble column population balance model. For short persistence times, the persistence and coalescence times are in good agreement. For longer persistence times, however, the persistence times are at least an order of magnitude longer than the corresponding coalescence times from parameter fitting. This discrepancy may be attributed to the uncertainties concerning the estimation of energy dissipation rates, collision rates and mechanisms and contact times of the bubbles.
Resumo:
The pulmonary crackling and the formation of liquid bridges are problems that for centuries have been attracting the attention of scientists. In order to study these phenomena, it was developed a canonical cubic lattice-gas like model to explain the rupture of liquid bridges in lung airways [A. Alencar et al., 2006, PRE]. Here, we further develop this model and add entropy analysis to study thermodynamic properties, such as free energy and force. The simulations were performed using the Monte Carlo method with Metropolis algorithm. The exchange between gas and liquid particles were performed randomly according to the Kawasaki dynamics and weighted by the Boltzmann factor. Each particle, which can be solid (s), liquid (l) or gas (g), has 26 neighbors: 6 + 12 + 8, with distances 1, √2 and √3, respectively. The energy of a lattice's site m is calculated by the following expression: Em = ∑k=126 Ji(m)j(k) in witch (i, j) = g, l or s. Specifically, it was studied the surface free energy of the liquid bridge, trapped between two planes, when its height is changed. For that, was considered two methods. First, just the internal energy was calculated. Then was considered the entropy. It was fond no difference in the surface free energy between this two methods. We calculate the liquid bridge force between the two planes using the numerical surface free energy. This force is strong for small height, and decreases as the distance between the two planes, height, is increased. The liquid-gas system was also characterized studying the variation of internal energy and heat capacity with the temperature. For that, was performed simulation with the same proportion of liquid and gas particle, but different lattice size. The scale of the liquid-gas system was also studied, for low temperature, using different values to the interaction Jij.
Resumo:
We have investigated the nucleation rate at which cavities are formed in 4He and 3He at negative pressures due to thermal fluctuations. To this end, we have used a density functional that reproduces the He liquid-gas interface along the coexistence line. The inclusion of thermal effects in the calculation of the barrier against nucleation results in a sizable decrease of the absolute value of the tensile strength above 1.5 K.
Resumo:
Using event-driven molecular dynamics simulations, we study a three-dimensional one-component system of spherical particles interacting via a discontinuous potential combining a repulsive square soft core and an attractive square well. In the case of a narrow attractive well, it has been shown that this potential has two metastable gas-liquid critical points. Here we systematically investigate how the changes of the parameters of this potential affect the phase diagram of the system. We find a broad range of potential parameters for which the system has both a gas-liquid critical point C1 and a liquid-liquid critical point C2. For the liquid-gas critical point we find that the derivatives of the critical temperature and pressure, with respect to the parameters of the potential, have the same signs: they are positive for increasing width of the attractive well and negative for increasing width and repulsive energy of the soft core. This result resembles the behavior of the liquid-gas critical point for standard liquids. In contrast, for the liquid-liquid critical point the critical pressure decreases as the critical temperature increases. As a consequence, the liquid-liquid critical point exists at positive pressures only in a finite range of parameters. We present a modified van der Waals equation which qualitatively reproduces the behavior of both critical points within some range of parameters, and gives us insight on the mechanisms ruling the dependence of the two critical points on the potential¿s parameters. The soft-core potential studied here resembles model potentials used for colloids, proteins, and potentials that have been related to liquid metals, raising an interesting possibility that a liquid-liquid phase transition may be present in some systems where it has not yet been observed.
Resumo:
Pb17Li is today a reference breeder material in diverse fusion R&D programs worldwide. One of the main issues in these programs is the problem of liquid metals breeder blanket behavior. Structural material of the blanket should meet high requirements because of extreme operating conditions. Therefore the knowledge of eutectic properties like optimal composition, physical and thermodynamic behavior or diffusion coefficients of Tritium are extremely necessary for current designs. In particular, the knowledge of the function linking the tritium concentration dissolved in liquid materials with the tritium partial pressure at a liquid/gas interface in equilibrium, CT=f(PT), is of basic importance because it directly impacts all functional properties of a blanket determining: tritium inventory, tritium permeation rate and tritium extraction efficiency. Nowadays, understanding the structure and behavior of this compound is a real goal in fusion engineering and materials science. Simulations of liquids can provide much information to the community; not only supplementing experimental data, but providing new tests of theories and ideas, making specific predictions that require experimental tests, and ultimately helping to lead to the deeper understanding and better predictive behavior.
Resumo:
This paper investigates the reflection characteristics of structural or guided waves in rods at a solid/liquid interface. Structural waves, whose wavelengths are much larger than the diameter of the rod, are described in a first approximation by classical one-dimensional wave theory. The reflection characteristics of such waves at a solid/liquid (melting) interface has been reported by two different ultrasonic measurement techniques: first, measuring the fast regression rate of a melting interface during the burning of metal rod samples in an oxygen-enriched environment, and second, monitoring the propagation of the solid/liquid interface during the slow melting and solidification of a rod sample in a furnace. The second work clearly shows that the major reflection occurs from the solid/liquid interface and not the liquid/gas interface as predicted by plane longitudinal wave reflectivity theory. The present work confirms this observation by reporting on the results of some specially designed experiments to identify the main interface of reflection for structural waves in rods. Hence, it helps in explaining the fundamental discrepancy between the reflection characteristics at a solid/liquid interface between low frequency structural waves and high frequency bulk waves, and confirms that the detected echo within a burning metallic rod clearly represents a reflection from the solid/liquid interface. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
O desenvolvimento de novos materiais e a sua caracterização é de extrema importância no dimensionamento e construção de equipamentos criogénicos. A empresa Versarien desenvolveu uma técnica capaz de produzir cobre poroso, conseguindo controlar a porosidade e o tamanho de poros. Os materiais porosos são de especial interesse para dispositivos criogénicos em aplicações espaciais. Um exemplo desta aplicação são as unidades de armazenamento de energia (Energy Storage Units-ESU), onde um material poroso é usado em ausência de gravidade para reter um líquido criogénico por capilaridade, de modo a manter dispositivos a uma temperatura baixa e constante. Neste caso, um material poroso de elevada condutividade térmica, como o cobre, seria de grande interesse uma vez que permite obter uma boa homogeneidade de temperatura na célula. Neste trabalho foi desenvolvido um sistema para medir a condutividade térmica deste material, entre 15 e 260 K, para porosidades entre 50% e 80%, utilizando um criorrefrigerador 2 W @ 20 K. Estas medições permitiram determinar que a pureza do cobre poroso se encontra entre RRR20 (RRR: Residual-resistivity ratio) e RRR10, apresentando uma tortuosidade que se encontra de acordo com um modelo simples descrito nesta dissertação. Foi ainda desenhado, construído e testado um criostato portátil, que apenas necessita de azoto líquido e de bombeamento primário para que se possam realizar medições de condutividade térmica entre 77 e 300 K.
Resumo:
Density functionals that reproduce the helium liquid-gas interface as a function of temperature have been used, within an improved homogeneous nucleation approach, to investigate thermal nucleation and cavitation in both helium isotopes. The results are compared with available experimental data on cavitation in 3He and 4He. Predictions are made for cavitation in 3He at negative pressures and for nucleation in both isotopes.
Resumo:
We compute the properties of a class of charged black holes in antide Sitter space-time, in diverse dimensions. These black holes are solutions of consistent Einstein-Maxwell truncations of gauged supergravities, which are shown to arise from the inclusion of rotation in the transverse space. We uncover rich thermodynamic phase structures for these systems, which display classic critical phenomena, including structures isomorphic to the van der WaalsMaxwell liquid-gas system. In that case, the phases are controlled by the universal cusp and swallowtail shapes familiar from catastrophe theory. All of the thermodynamics is consistent with field theory interpretations via holography, where the dual field theories can sometimes be found on the world volumes of coincident rotating branes.
Resumo:
Tämä diplomityö on Lappeenrannan teknillisessä yliopistossa aloitetun kaasunpolttotutkimushankkeen ensimmäinen tutkimusjakso. Tutkimushanketta varten on LTY:n voimalaitostekniikan koepolttolaboratoriossa rakennettu kaasunpolton tutkimuslaitteisto, jolla tässä diplomityössä perehdytään kaasuliekin lämpötilan mittausmenetelmiin, lämmönsiirtoon ja syntyviin päästöihin neste- ja maakaasupoltossa. Hankkeen toisessa tutkimusjaksossa laitteistolla tutkitaan regenaratiivista polttoa, ja polttoaineena käytetään neste- ja maakaasun lisäksi muita kaasuja kuten vetyä ja erilaisia seoskaasuja. Kaasunpolttotutkimushankkeen kokonaistavoitteena on pienentää kaasunpoltossa syntyviä NOx-päästöjä ja parantaa palamishyötysuhdetta ja tätä kautta pienentää laitteiston kokoa ja vähentää hiilidioksidipäästöjä.
Resumo:
Electrical resistivity tomography (ERT) is a well-established method for geophysical characterization and has shown potential for monitoring geologic CO2 sequestration, due to its sensitivity to electrical resistivity contrasts generated by liquid/gas saturation variability. In contrast to deterministic inversion approaches, probabilistic inversion provides the full posterior probability density function of the saturation field and accounts for the uncertainties inherent in the petrophysical parameters relating the resistivity to saturation. In this study, the data are from benchtop ERT experiments conducted during gas injection into a quasi-2D brine-saturated sand chamber with a packing that mimics a simple anticlinal geological reservoir. The saturation fields are estimated by Markov chain Monte Carlo inversion of the measured data and compared to independent saturation measurements from light transmission through the chamber. Different model parameterizations are evaluated in terms of the recovered saturation and petrophysical parameter values. The saturation field is parameterized (1) in Cartesian coordinates, (2) by means of its discrete cosine transform coefficients, and (3) by fixed saturation values in structural elements whose shape and location is assumed known or represented by an arbitrary Gaussian Bell structure. Results show that the estimated saturation fields are in overall agreement with saturations measured by light transmission, but differ strongly in terms of parameter estimates, parameter uncertainties and computational intensity. Discretization in the frequency domain (as in the discrete cosine transform parameterization) provides more accurate models at a lower computational cost compared to spatially discretized (Cartesian) models. A priori knowledge about the expected geologic structures allows for non-discretized model descriptions with markedly reduced degrees of freedom. Constraining the solutions to the known injected gas volume improved estimates of saturation and parameter values of the petrophysical relationship. (C) 2014 Elsevier B.V. All rights reserved.