999 resultados para lip contour model
Resumo:
Extraction and reconstruction of rectal wall structures from an ultrasound image is helpful for surgeons in rectal clinical diagnosis and 3-D reconstruction of rectal structures from ultrasound images. The primary task is to extract the boundary of the muscular layers on the rectal wall. However, due to the low SNR from ultrasound imaging and the thin muscular layer structure of the rectum, this boundary detection task remains a challenge. An active contour model is an effective high-level model, which has been used successfully to aid the tasks of object representation and recognition in many image-processing applications. We present a novel multigradient field active contour algorithm with an extended ability for multiple-object detection, which overcomes some limitations of ordinary active contour models—"snakes." The core part in the algorithm is the proposal of multigradient vector fields, which are used to replace image forces in kinetic function for alternative constraints on the deformation of active contour, thereby partially solving the initialization limitation of active contour for rectal wall boundary detection. An adaptive expanding force is also added to the model to help the active contour go through the homogenous region in the image. The efficacy of the model is explained and tested on the boundary detection of a ring-shaped image, a synthetic image, and an ultrasound image. The experimental results show that the proposed multigradient field-active contour is feasible for multilayer boundary detection of rectal wall
Resumo:
Cleft lip and palate (CLP) is the most common congenital defect of the face. Many animal models have been utilized to study embryogenesis and pathogenesis of CLP, including the development of secondary anomalies and consequent deformities. However, the ideal gestational age for surgical creation of lip or palate defects in rat models has never been determined. The aim of the present study is to improve the experimental model utilizing rat fetuses, defining the most appropriate timing for creation of the lip defect model. The study was composed of three groups of fetuses undergoing surgical creation of a lip defect at the left side of the superior lip at 17.5, 18.5, and 19.5 days of gestation. Fetuses were harvested at 21.5 days of gestation (term = 22 days) and underwent macroscopic and microscopic analyses. We found that the most appropriate moment for lip defect creation was at 19.5 days, given the presence of lip depression at the site of the defect and asymmetry and retraction associated with interruption of the lip and complete reepithelialization of the borders of the defect.
Resumo:
In this paper, we propose a new paradigm to carry outthe registration task with a dense deformation fieldderived from the optical flow model and the activecontour method. The proposed framework merges differenttasks such as segmentation, regularization, incorporationof prior knowledge and registration into a singleframework. The active contour model is at the core of ourframework even if it is used in a different way than thestandard approaches. Indeed, active contours are awell-known technique for image segmentation. Thistechnique consists in finding the curve which minimizesan energy functional designed to be minimal when thecurve has reached the object contours. That way, we getaccurate and smooth segmentation results. So far, theactive contour model has been used to segment objectslying in images from boundary-based, region-based orshape-based information. Our registration technique willprofit of all these families of active contours todetermine a dense deformation field defined on the wholeimage. A well-suited application of our model is theatlas registration in medical imaging which consists inautomatically delineating anatomical structures. Wepresent results on 2D synthetic images to show theperformances of our non rigid deformation field based ona natural registration term. We also present registrationresults on real 3D medical data with a large spaceoccupying tumor substantially deforming surroundingstructures, which constitutes a high challenging problem.
Resumo:
Most active-contour methods are based either on maximizing the image contrast under the contour or on minimizing the sum of squared distances between contour and image 'features'. The Marginalized Likelihood Ratio (MLR) contour model uses a contrast-based measure of goodness-of-fit for the contour and thus falls into the first class. The point of departure from previous models consists in marginalizing this contrast measure over unmodelled shape variations. The MLR model naturally leads to the EM Contour algorithm, in which pose optimization is carried out by iterated least-squares, as in feature-based contour methods. The difference with respect to other feature-based algorithms is that the EM Contour algorithm minimizes squared distances from Bayes least-squares (marginalized) estimates of contour locations, rather than from 'strongest features' in the neighborhood of the contour. Within the framework of the MLR model, alternatives to the EM algorithm can also be derived: one of these alternatives is the empirical-information method. Tracking experiments demonstrate the robustness of pose estimates given by the MLR model, and support the theoretical expectation that the EM Contour algorithm is more robust than either feature-based methods or the empirical-information method. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Background The myotome is the primitive skeletal muscle that forms within the embryonic metameric body wall. It can be subdivided into an epaxial and hypaxial domain. It has been shown that the formation of the epaxial myotome requires the dorsomedial lip of the dermomyotome (DML). Although the ventrolateral lip (VLL) of the dermomyotome is believed to be required for the formation of the hypaxial myotome, experimentally evidence for this statement still needs to be provided. Provision of such data would enable the resolution of a debate regarding the formation of the hypaxial dermomyotome. Two mechanisms have been proposed for this tissue. The first proposes that the intermediate dermomyotome undergoes cellular expansion thereby pushing the ventral lateral lip in a lateral direction (translocation). In contrast, the alternative view holds that the ventral lateral lip grows laterally. Results Using time lapse confocal microscopy, we observed that the GFP-labelled ventrolateral lip (VLL) of the dermomyotome grows rather than translocates in a lateral direction. The necessity of the VLL for lateral extension of the myotome was addressed by ablation studies. We found that the hypaxial myotome did not form after VLL ablation. In contrast, the removal of an intermediate portion of the dermomyotome had very little effect of the hypaxial myotome. These results demonstrate that the VLL is required for the formation of the hypaxial myotome. Conclusion Our study demonstrates that the dermomyotome ventrolateral lip is essential for the hypaxial myotome formation and supports the lip extension model. Therefore, despite being under independent signalling controls, both the dorsomedial and ventrolateral lip fulfil the same function, i.e. they extend into adjacent regions permitting the growth of the myotome.
Resumo:
Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X data to detect flooded regions in urban areas is described. An important application for this would be the calibration and validation of the flood extent predicted by an urban flood inundation model. To date, research on such models has been hampered by lack of suitable distributed validation data. The study uses a 3m resolution TerraSAR-X image of a 1-in-150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SETES SAR simulator was used in conjunction with airborne LiDAR data to estimate regions of the TerraSAR-X image in which water would not be visible due to radar shadow or layover caused by buildings and taller vegetation, and these regions were masked out in the flood detection process. A semi-automatic algorithm for the detection of floodwater was developed, based on a hybrid approach. Flooding in rural areas adjacent to the urban areas was detected using an active contour model (snake) region-growing algorithm seeded using the un-flooded river channel network, which was applied to the TerraSAR-X image fused with the LiDAR DTM to ensure the smooth variation of heights along the reach. A simpler region-growing approach was used in the urban areas, which was initialized using knowledge of the flood waterline in the rural areas. Seed pixels having low backscatter were identified in the urban areas using supervised classification based on training areas for water taken from the rural flood, and non-water taken from the higher urban areas. Seed pixels were required to have heights less than a spatially-varying height threshold determined from nearby rural waterline heights. Seed pixels were clustered into urban flood regions based on their close proximity, rather than requiring that all pixels in the region should have low backscatter. This approach was taken because it appeared that urban water backscatter values were corrupted in some pixels, perhaps due to contributions from side-lobes of strong reflectors nearby. The TerraSAR-X urban flood extent was validated using the flood extent visible in the aerial photos. It turned out that 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. These findings indicate that TerraSAR-X is capable of providing useful data for the calibration and validation of urban flood inundation models.
Resumo:
The performance of flood inundation models is often assessed using satellite observed data; however these data have inherent uncertainty. In this study we assess the impact of this uncertainty when calibrating a flood inundation model (LISFLOOD-FP) for a flood event in December 2006 on the River Dee, North Wales, UK. The flood extent is delineated from an ERS-2 SAR image of the event using an active contour model (snake), and water levels at the flood margin calculated through intersection of the shoreline vector with LiDAR topographic data. Gauged water levels are used to create a reference water surface slope for comparison with the satellite-derived water levels. Residuals between the satellite observed data points and those from the reference line are spatially clustered into groups of similar values. We show that model calibration achieved using pattern matching of observed and predicted flood extent is negatively influenced by this spatial dependency in the data. By contrast, model calibration using water elevations produces realistic calibrated optimum friction parameters even when spatial dependency is present. To test the impact of removing spatial dependency a new method of evaluating flood inundation model performance is developed by using multiple random subsamples of the water surface elevation data points. By testing for spatial dependency using Moran’s I, multiple subsamples of water elevations that have no significant spatial dependency are selected. The model is then calibrated against these data and the results averaged. This gives a near identical result to calibration using spatially dependent data, but has the advantage of being a statistically robust assessment of model performance in which we can have more confidence. Moreover, by using the variations found in the subsamples of the observed data it is possible to assess the effects of observational uncertainty on the assessment of flooding risk.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Comunicación presentada en la VI Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA'95), Alicante, 15-17 noviembre 1995.
Resumo:
This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.
Resumo:
This article describes a novel algorithmic development extending the contour advective semi-Lagrangian model to include nonconservative effects. The Lagrangian contour representation of finescale tracer fields, such as potential vorticity, allows for conservative, nondiffusive treatment of sharp gradients allowing very high numerical Reynolds numbers. It has been widely employed in accurate geostrophic turbulence and tracer advection simulations. In the present, diabatic version of the model the constraint of conservative dynamics is overcome by including a parallel Eulerian field that absorbs the nonconservative ( diabatic) tendencies. The diabatic buildup in this Eulerian field is limited through regular, controlled transfers of this field to the contour representation. This transfer is done with a fast newly developed contouring algorithm. This model has been implemented for several idealized geometries. In this paper a single-layer doubly periodic geometry is used to demonstrate the validity of the model. The present model converges faster than the analogous semi-Lagrangian models at increased resolutions. At the same nominal spatial resolution the new model is 40 times faster than the analogous semi-Lagrangian model. Results of an orographically forced idealized storm track show nontrivial dependency of storm-track statistics on resolution and on the numerical model employed. If this result is more generally applicable, this may have important consequences for future high-resolution climate modeling.
Resumo:
The influence of orography on the structure of stationary planetary Rossby waves is studied in the context of a contour dynamics model of the large-scale atmospheric flow. Orography of infinitesimal and finite amplitude is studied using analytical and numerical techniques. Three different types of orography are considered: idealized orography in the form of a global wave, idealized orography in the form of a local table mountain, and the earth's orography. The study confirms the importance of resonances, both in the infinitesimal orography and in the finite orography cases. With finite orography the stationary waves organize themselves into a one-dimensional set of solutions, which due to the resonances, is piecewise connected. It is pointed out that these stationary waves could be relevant for atmospheric regimes.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04