924 resultados para lip biopsy
Resumo:
The increased use of orofacial fillers in cosmetic procedures has led to new diagnostic challenges for dentists and oral pathologists. Here, we describe a case with multiple oral foreign body granulomas, which were formed after a polymethylmetacrylate injection for cosmetic purposes. © 2011 European Association for Cranio-Maxillo-Facial Surgery.
Resumo:
A case report of the papillary cystadenoma from minor salivary gland in lower lip of a 54-year-old man is described.
Resumo:
Mucocele forms because of salivary gland mucous extravasation or retention and is usually related to trauma in the area of the lower lips. Ruptured ducts release the mucous that accumulates into adjacent tissues, leading to swelling. This report describes a large mucocele involving the lower lip, which was produced in a child by incorrect use of a pacifier. A few important concepts are discussed to help clinicians in the diagnosis and treatment of this pathology. © 2010 Dermatology Online Journal.
Resumo:
Acoustically, car cabins are extremely noisy and as a consequence audio-only, in-car voice recognition systems perform poorly. As the visual modality is immune to acoustic noise, using the visual lip information from the driver is seen as a viable strategy in circumventing this problem by using audio visual automatic speech recognition (AVASR). However, implementing AVASR requires a system being able to accurately locate and track the drivers face and lip area in real-time. In this paper we present such an approach using the Viola-Jones algorithm. Using the AVICAR [1] in-car database, we show that the Viola- Jones approach is a suitable method of locating and tracking the driver’s lips despite the visual variability of illumination and head pose for audio-visual speech recognition system.
Resumo:
The performance of automatic speech recognition systems deteriorates in the presence of noise. One known solution is to incorporate video information with an existing acoustic speech recognition system. We investigate the performance of the individual acoustic and visual sub-systems and then examine different ways in which the integration of the two systems may be performed. The system is to be implemented in real time on a Texas Instruments' TMS320C80 DSP.
An approach to statistical lip modelling for speaker identification via chromatic feature extraction
Resumo:
This paper presents a novel technique for the tracking of moving lips for the purpose of speaker identification. In our system, a model of the lip contour is formed directly from chromatic information in the lip region. Iterative refinement of contour point estimates is not required. Colour features are extracted from the lips via concatenated profiles taken around the lip contour. Reduction of order in lip features is obtained via principal component analysis (PCA) followed by linear discriminant analysis (LDA). Statistical speaker models are built from the lip features based on the Gaussian mixture model (GMM). Identification experiments performed on the M2VTS1 database, show encouraging results
Resumo:
This paper investigates the use of lip information, in conjunction with speech information, for robust speaker verification in the presence of background noise. It has been previously shown in our own work, and in the work of others, that features extracted from a speaker's moving lips hold speaker dependencies which are complementary with speech features. We demonstrate that the fusion of lip and speech information allows for a highly robust speaker verification system which outperforms the performance of either sub-system. We present a new technique for determining the weighting to be applied to each modality so as to optimize the performance of the fused system. Given a correct weighting, lip information is shown to be highly effective for reducing the false acceptance and false rejection error rates in the presence of background noise
Resumo:
A new technique is proposed for learning the dynamic characteristics of a deformable object, applied in particular to the problem of lip-tracking. Experimental results are given which demonstrate that the use of dynamic models allows the system to track more robustly under adverse conditions and to correct spurious, poorly tracked frames
Resumo:
Investigates the use of temporal lip information, in conjunction with speech information, for robust, text-dependent speaker identification. We propose that significant speaker-dependent information can be obtained from moving lips, enabling speaker recognition systems to be highly robust in the presence of noise. The fusion structure for the audio and visual information is based around the use of multi-stream hidden Markov models (MSHMM), with audio and visual features forming two independent data streams. Recent work with multi-modal MSHMMs has been performed successfully for the task of speech recognition. The use of temporal lip information for speaker identification has been performed previously (T.J. Wark et al., 1998), however this has been restricted to output fusion via single-stream HMMs. We present an extension to this previous work, and show that a MSHMM is a valid structure for multi-modal speaker identification
Resumo:
Investigates the use of lip information, in conjunction with speech information, for robust speaker verification in the presence of background noise. We have previously shown (Int. Conf. on Acoustics, Speech and Signal Proc., vol. 6, pp. 3693-3696, May 1998) that features extracted from a speaker's moving lips hold speaker dependencies which are complementary with speech features. We demonstrate that the fusion of lip and speech information allows for a highly robust speaker verification system which outperforms either subsystem individually. We present a new technique for determining the weighting to be applied to each modality so as to optimize the performance of the fused system. Given a correct weighting, lip information is shown to be highly effective for reducing the false acceptance and false rejection error rates in the presence of background noise
Resumo:
The Early–mid Cretaceous marks the confluence of three major continental-scale events in eastern Gondwana: (1) the emplacement of a Silicic Large Igneous Province (LIP) near the continental margin; (2) the volcaniclastic fill, transgression and regression of a major epicontinental seaway developed over at least a quarter of the Australian continent; and (3) epeirogenic uplift, exhumation and continental rupturing culminating in the opening of the Tasman Basin c. 84 Ma. The Whitsunday Silicic LIP event had widespread impact, producing both substantial extrusive volumes of dominantly silicic pyroclastic material and coeval first-cycle volcanogenic sediment that accumulated within many eastern Australian sedimentary basins, and principally in the Great Australian Basin system (>2 Mkm3 combined volume). The final pulse of volcanism and volcanogenic sedimentation at c. 105–95 Ma coincided with epicontinental seaway regression, which shows a lack of correspondence with the global sea-level curve, and alternatively records a wider, continental-scale effect of volcanism and rift tectonism. Widespread igneous underplating related to this LIP event is evident from high paleogeothermal gradients and regional hydrothermal fluid flow detectable in the shallow crust and over a broad region. Enhanced CO2 fluxing through sedimentary basins also records indirectly, large-scale, LIP-related mafic underplating. A discrete episode of rapid crustal cooling and exhumation began c. 100–90 Ma along the length of the eastern Australian margin, related to an enhanced phase of continental rifting that was largely amagmatic, and probably a switch from wide–more narrow rift modes. Along-margin variations in detachment fault architecture produced narrow (SE Australia) and wide continental margins with marginal, submerged continental plateaux (NE Australia). Long-lived NE-trending cross-orogen lineaments controlled the switch from narrow to wide continental margin geometries.
Resumo:
LIP emplacement is linked to the timing and evolution of supercontinental break-up. LIP-related break-up produces volcanic rifted margins, new and large (up to 108 km2) ocean basins, and new, smaller continents that undergo dispersal and potentially reassembly (e.g., India). However, not all continental LIPs lead to continental rupture. We analysed the <330 Ma continental LIP record(following final assembly of Pangea) to find relationships between LIP event attributes (e.g., igneous volume, extent, distance from pre-existing continental margin) and ocean basin attributes (e.g., length of new ocean basin/rifted margin) and how these varied during the progressive break up of Pangea. No correlation exists between LIP magnitude and size of the subsequent ocean basin or rifted margin. Our review suggests a three-phased break-up history of Pangea: 1) “Preconditioning” phase (∼330–200 Ma): LIP events (n=7) occurred largely around the supercontinental margin clustering today in Asia, with a low (<20%) rifting success rate. The Panjal Traps at ∼280 Ma may represent the first continental rupturing event of Pangea, resulting in continental ribboning along the Tethyan margin; 2) “Main Break-up” phase (∼200–100 Ma): numerous large LIP events(n=10) in the supercontinent interior, resulting in highly successful fragmentation (90%) and large, new ocean basins(e.g., Central/South Atlantic, Indian, >3000 km long); 3) “Waning” phase (∼100–0 Ma): Declining LIP magnitudes (n=6), greater proximity to continental margins (e.g., Madagascar, North Atlantic, Afro-Arabia, Sierra Madre) producing smaller ocean basins (<2600 km long). How Pangea broke up may thus have implications for earlier supercontinent reconstructions and LIP record.
Resumo:
Utilising archival human breast cancer biopsy material we examined the stromal/epithelial interactions of several matrix metalloproteinases (MMPs) using in situ-RT-PCR (IS-RT-PCR). In breast cancer, the stromal/epithelial interactions that occur, and the site of production of these proteases, are central to understanding their role in invasive and metastatic processes. We examined MT1-MMP (MMP-14, membrane type-1-MMP), MMP-1 (interstitial collagenase) and MMP-3 (stromelysin-1) for their localisation profile in progressive breast cancer biopsy material (poorly differentiated invasive breast carcinoma (PDIBC), invasive breast carcinomas (IBC) and lymph node metastases (LNM)). Expression of MT1-MMP, MMP-1 and MMP-3 was observed in both the tumour epithelial and surrounding stromal cells in most tissue sections examined. MT1-MMP expression was predominantly localised to the tumour component in the pre-invasive lesions. MMP-1 gene expression was relatively well distributed between both tissue compartments, while MMP-3 demonstrated highest expression levels in the stromal tissue surrounding the epithelial tumour cells. The results demonstrate the ability to distinguish compartmental gene expression profiles using IS-RT-PCR. Further, we suggest a role for MT1-MMP in early tumour progression, expression of MMP-1 during metastasis and focal expression pattern of MMP-3 in areas of expansion. These expression profiles may provide markers for early breast cancer diagnoses and present potential therapeutic targets.