115 resultados para liners
Resumo:
Different surface treatment protocols of poly(methyl methacrylate) have been proposed to improve the adhesion of silicone-based resilient denture liners to poly(methyl methacrylate) surfaces. The purpose of this study was to evaluate the effect of different poly(methyl methacrylate) surface treatments on the adhesion of silicone-based resilient denture liners. Poly(methyl methacrylate) specimens were prepared and divided into 4 treatment groups: no treatment (control), methyl methacrylate for 180 seconds, acetone for 30 seconds, and ethyl acetate for 60 seconds. Poly(methyl methacrylate) disks (30.0 × 5.0 mm; n = 10) were evaluated regarding surface roughness and surface free energy. To evaluate tensile bond strength, the resilient material was applied between 2 treated poly(methyl methacrylate) bars (60.0 × 5.0 × 5.0 mm; n = 20 for each group) to form a 2-mm-thick layer. Data were analyzed by 1-way ANOVA and the Tukey honestly significant difference tests (α = .05). A Pearson correlation test verified the influence of surface properties on tensile bond strength. Failure type was assessed, and the poly(methyl methacrylate) surface treatment modifications were visualized with scanning electron microscopy. The surface roughness was increased (P < .05) by methyl methacrylate treatment. For the acetone and ethyl acetate groups, the surface free energy decreased (P < .05). The tensile bond strength was higher for the methyl methacrylate and ethyl acetate groups (P < .05). No correlation was found regarding surface properties and tensile bond strength. Specimens treated with acetone and methyl methacrylate presented a cleaner surface, whereas the ethyl acetate treatment produced a porous topography. The methyl methacrylate and ethyl acetate surface treatment protocols improved the adhesion of a silicone-based resilient denture liner to poly(methyl methacrylate).
Resumo:
Purpose: To evaluate the cytotoxic effects of resin-based light-cured liners on culture of pulp cells. Methods: Discs measuring 4 mill in diameter and 2 mm thick were fabricated from TheraCal (TCMTA), Vitrebond (VIT), and Ultrablend Plus (UBP). These specimens were immersed in serum-free culture medium (DMEM) for 24 hours or 7 days to produce the extracts. After incubating the pulp cells for 72 hours, the extracts were applied on the cells and the cytotoxic effects were determined based on the cell metabolism (MTT), total protein expression and cell morphology (SEM). In the control group, fresh DMEM was used. Data from MTT analysis and protein expression were submitted to Kruskal-Wallis and Mann-Whitney tests at the preset level of significance of 5%. Results: When in contact with the 24-hour extract, TCMTA, VIT, and UBP decreased the cell metabolism by 31.5%, 73.5% and 71.0%, respectively. The total protein expressed by the cells in contact with VIT and UBP was lower than TCMTA and DMEM (Mann-Whitney, P< 0.05). When in contact with the 7-day extract, TCMTA, VIT, and UBP decreased the metabolic activity by 45.9%, 77.1% and 64.4%, respectively. All the liners expressed statistically lower amounts of proteins when compared to the control. A reduction in the number of cells was observed for all liners. The remaining cells from TCMTA group resembled those from the control group while for VIT and UBP the cells presented significant morphological alterations. (Ani J Dent 2009;22:137-142).
Resumo:
Corroded, deteriorated, misaligned, and distorted drainage pipes can cause a serious threat to a roadway. Normal practice is to remove and replace the damaged drainage structure. An alternative method of rehabilitating these structures is to slip line them with a polyethylene liner. Twelve drainage structures were slip lined with polyethylene liners during 1994 in Iowa. Two types of liners installed were "Culvert Renew" and "Snap-Tite." It was found that the liners could be easily installed by most highway, county, and city maintenance departments. The liners restore the flow and increase the service life of the original drainage structure. The liners were found to be cost competitive compared with the removal and replacement of the existing drainage structure. Slip lining has the largest economic benefit when the roadway is paved, the culvert is under a deep fill, or traffic volumes are high. The annular space between the original pipe and the liner was filled with flowable mortar. Care should be taken to properly brace and grout the annular space between the liner and the culvert to avoid deformation of the liner.
Resumo:
Corroded, deteriorated, misaligned, and distorted drainage pipes can cause a serious threat to a roadway. Normal practice is to remove and replace the damaged drainage structure. An alternative method of rehabilitating these structures is to slip line them with a polyethylene liner. Twelve drainage structures were slip lined with polyethylene liners during 1994 in Iowa. Two types of liners installed were "Culvert Renew" and "Snap-Tite". It was found that the liners could be easily installed by most highway, county, and city maintenance departments. The liners restore the flow and increase the service life of the original drainage structure. The liners were found to be cost competitive with the removal and replacement of the existing drainage structure. Slip lining has the largest economic benefit when the roadway is paved, the culvert is under a deep fill, or traffic volumes are high. The annular space between the original pipe and the liner was filled with flowable mortar. Care should be taken to properly brace and grout the annular space between the liner and the culvert.
Resumo:
O presente trabalho tem como objetivo investigar o comportamento hidráulico e mecânico de misturas de Solo-Bentonita (SB) e de Solo-Cimento-Bentonita (SCB) quando permeada com água e óleo diesel, bem como analisar a influência da variação do teor de cimento com a finalidade de propiciar resultados capazes de auxiliar para um projeto construtivo de barreiras verticais de contaminantes. O programa experimental consistiu na realização de ensaios de compressão não-confinada, ensaios de condutividade hidráulica com um permeâmetro de parede rígida do tipo Compaction mold e ensaios de difração de raios-X a fim de se estudar o comportamento das misturas de SB e SCB em termos de resistência e permeabilidade. Os resultados dos ensaios realizados para cada tipo de mistura foram analisados separadamente. A análise dos resultados permitiu identificar as alterações provocadas na condutividade hidráulica pela variação do fator a/c e do líquido percolante. Os resultados dos ensaios de compressão não-confinada demonstraram uma maior resistência com a diminuição do fator a/c. A mistura de SB apresentou um aumento da condutividade hidráulica quando permeada com óleo diesel comparado com o valor encontrado quando permeado com água, o que pode ser explicado pelo inchamento intracristalino demonstrado pelo ensaio de difração de raios-X. As amostras de SCB, devido à introdução de cimento, apresentaram um acréscimo inicial na condutividade hidráulica (permeadas com água) quando comparadas com amostras de SB, seguidas de uma redução na condutividade hidráulica quando permeadas com óleo diesel.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Statement of problem. Microwave irradiation has been suggested for denture disinfection. However, the effect of this procedure on the hardness and bond strength between resilient liners and denture base acrylic resin is not known.Purpose. This study evaluated the effect of water storage time and microwave disinfection on the hardness and peel bond strength of 2 silicone resilient lining materials to a heat-polymerized acrylic resin.Material and methods. Acrylic resin (Lucitone 199) specimens (75 X 10 X 3 mm) were stored in water at 37 degrees C (2 or 30 days) before bonding (n = 160). The resilient lining materials (GC Reline Extra Soft and Dentusil) were bonded to the denture base and divided into the following 4 groups (n = 10): Tests performed immediately after bonding (control); specimens immersed in water (200 mL) and irradiated twice, with 650 W for 6 minutes; specimens irradiated daily for 7 total cycles of disinfection; specimens immersed in water (37 degrees C) for 7 days. Specimens were submitted to a 180-degree peel test (at a crosshead speed of 10 mm/min) and the failure values (MPa) and mode of failure were recorded. Pretreatment and posttreatment hardness measurements (Shore A) of the resilient materials were also performed. Three-way analysis of variance, followed by the Tukey HSD test, was performed (alpha=.05).Results. The analysis revealed that, for all conditions, the mean failure strengths of GC Reline Extra Soft (0.95-1.19 MPa) were significantly higher (P<.001) than those of Dentusil (0.45-0.50 MPa). The adhesion of the liners was not adversely affected by water storage time of Lucitone 199 or microwave disinfection. All peel test failures were cohesive. There was a small but significant difference (P<.001) between the pretreatment (34.33 Shore A) and posttreatment (38.69 Shore A) hardness measurements.Conclusion. Microwave disinfection did not compromise the hardness of either resilient liners or their adhesion to the denture base resin Lucitone 199.
Resumo:
Objective: To evaluate the effect of water storage time on the cytotoxicity of soft liners.Methods: Sample discs of soft liners Dentusoft, Dentuflex, Trusoft, Ufi-Gel-P and denture base acrylic resin Lucitone-550 were prepared and divided into four groups: GN: No treatment, G24: Stored in water at 37 degrees C for 24 h; G48: Stored in water at 37 degrees C for 48 h, GHW: Immersed in water at 55 degrees C for 10 min. To analyse the cytotoxic effect, three samples of each group were placed in tubes with Dubelcco's Modified Eagle Mediums and incubated at 37 degrees C for 24 h. During this period, the toxic substances were leached to the culture medium. The cytotoxicity was analysed quantitatively by the incorporation of radioactivity H-3-thymidine checking the number of viable cells (synthesis of DNA). The data were statistically analysed using two-way ANOVA and Tukey's honestly significant difference tests (alpha = 0.05).Results: Treatments did not reduce the cytotoxicity effect of the soft liners (p > 0.05). It was found that Ufi-Gel-P had a non-cytotoxic effect, Trusoft had a slightly cytotoxic effect, Dentuflex had a moderated cytotoxic effect, Dentusoft alternated between slightly and non-cytotoxic effect, and Lucitone-550 had non-cytotoxic effect when stored in water for 48 h.Conclusion: The effect of water storage and the heat treatment did not reduce the cytotoxicity of the soft liners.
Resumo:
Statement of problem. Two problems found in prostheses with resilient liners are bond failure to the acrylic resin base and increased permanent deformation due to material aging.Purpose. This in vitro study evaluated the effect of varying amounts of thermal cycling on bond strength and permanent deformation of 2 resilient denture liners bonded to an acrylic resin base.Material and methods. Plasticized acrylic resin (PermaSoft) or silicone (Softliner) resilient lining materials were processed to a heat-polymerized acrylic resin (QC-20). One hundred rectangular specimens (10 X 10-mm(2) cross-sectional area) and 100 cylindrically-shaped specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Specimens were divided into 9 test groups (n=10) and were thermal cycled for 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, and 4000 cycles. Control specimens (n=10) were stored for 24 hours in water at 37degreesC. Mean bond strength, expressed as stress at failure (MPa), was determined with a tensile test using a universal testing machine at a crosshead speed of 5 mm/min. Analysis of failure mode, expressed as a percent (%), was recorded as either cohesive, adhesive, or both, after observation. Permanent deformation, expressed as a percent (%), was determined using ADA specification no. 18. Data from both tests were examined with a 2-way analysis of variance and a Tukey test (alpha=.05).Results. For the tensile test, Softliner specimens submitted to different thermal cycling regimens demonstrated no significantly different bond strength values from the control; however, there was a significant difference between the PermaSoft control group (0.47 +/- 0.09 MPa [mean +/- SD]) and the 500 cycle group (0.46 +/- 0.07 MPa) compared to the 4000 cycle group (0.70 +/- 0.20 MPa) (P<.05). With regard to failure type, the Softliner groups presented adhesive failure (100%) regardless of specimen treatment. PermaSoft groups presented adhesive (53%), cohesive (12%), or a combined mode of failure (35%). For the deformation test, there was no significant difference among the Softliner specimens. However, a significant difference was observed between control and PermaSoft specimens after 1500 or more cycles (1.88% +/- 0.24%) (P<.05).Conclusions. This in vitro study indicated that bond strength and permanent deformation of the 2 resilient denture liners tested varied according to their chemical composition.
Resumo:
Statement of problem. Two problems found in prostheses with soft liners are bond failure to the acrylic resin base and loss of elasticity due to material aging.Purpose. This in vitro study evaluated the effect of thermocycling on the bond strength and elasticity of 4 long-term soft denture liners to acrylic resin bases.Material and methods. Four soft lining materials (Molloplast-B, Flexor, Permasoft, and Pro Tech) and 2 acrylic resins (Classico, and Lucitone 199) were processed for testing according to manufacturers' instructions. Twenty rectangular specimens (10 X 10-mm(2) cross-sectional area) and twenty cylinder specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Samples were divided into a test group that was thermocycled 3000 times and a control group that was stored for 24 hours in water at 37degreesC. Mean bond strength, expressed in megapascals (Wa), was determined in the tensile test with the use of a universal testing machine at a crosshead speed of 5 mm/min. Elasticity, expressed as percent of permanent deformation, was calculated with an instrument for measuring permanent deformation described in ADA/ANSI specification 18. Data from both tests were examined with 1-way analysis of variance and a Tukey test, with calculation of a Scheffe interval at a 95% confidence level.Results. In the tensile test under control conditions, Molloplast-B (1.51 +/- 0.28 MPa [mean SD]) and Pro Tech (1.44 +/- 0.27 MPa) liners had higher bond strength values than the others (P < .05). With regard to the permanent deformation test, the lowest values were observed for Molloplast-B (0.48% +/- 0.19%) and Flexor (0.44% +/- 0.14%) (P < .05). Under thermocycling conditions, the highest bond strength occurred with Molloplast-B (1.37 +/- 0.24 MPa) (P < .05) With regard to the deformation test, Flexor (0.46% +/- 0.13%) and Molloplast-B (0.44% +/- 0.17%) liners had lower deformation values than the others (P < .05).Conclusion. The results of this in vitro study indicated that bond strength and permanent deformity values of the 4 soft denture liners tested varied according to their chemical composition. These tests are not completely valid for application to dental restorations because the forces they encounter are more closely related to shear and tear. However, the above protocol serves as a good method of investigation to evaluate differences between thermocycled and control groups.
Resumo:
Objective: the aim of this in vivo study was to evaluate the response of the pulp-dentin complex following application of resin-modified glass-ionomer cement, calcium hydroxide hard-setting cement and EDTA-soluble preparation of dentine matrix proteins (ESDP) in deep cavities prepared in non-human primate teeth. Methods: Eighteen deep Class V buccal cavities were prepared in premolars of four capuccin monkeys. In Groups 1 and 2, the cavity floor was lined with ESDP or a resin-modified glass-ionomer cement (Vitrebond - 3M ESPE), respectively. In Group 3 (control), the cavity was lined with a hard setting calcium hydroxide cement (Dycal - Dentsply). The cavities were subsequently filled with amalgam. After 6 months, the animals were sacrificed and the teeth were prepared for microscopic assessment. Six-micron thick serial sections were stained with H/E, Masson's trichrome and Brown & Brenn techniques. Results: No inflammatory pulpal response was observed for all experimental and control Groups. However, the amount of reactionary dentin deposition differed between groups in the rank order ESDP (Group 1) > calcium hydroxide (Group 3) > resin-modified glass-ionomer (Group 2). These differences were statistically significant. Conclusions: All materials were biocompatible when applied in deep cavities. ESDP stimulated higher deposition of reactionary dentin matrix than Vitrebond and Dycal.