954 resultados para limb girdle muscular dystrophy 2A
Resumo:
The Western blot technique is currently the standard detection method for suspected limb girdle muscular dystrophy (LGMD) 2A (calpainopathy). This is the first report in the English literature of the successful application of immunohistochemical techniques to support a diagnosis of LGMD 2A. This approach is straightforward and appears to be reasonably specific. We propose that immunohistochemical methods should be re-evaluated for the screening of undiagnosed patients with suspected LGMD 2A.
Resumo:
Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3). Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens), cell adhesion (fibronectin), muscle development (myosins and melusin) and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB) is upregulated in LGMD2A muscle samples, it could be hypothesized that β-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1). Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies
Resumo:
Loss-of-function mutations in calpain 3 have been shown to cause limb-girdle muscular dystrophy type 2A (LGMD2A), an autosomal recessive disorder that results in gradual wasting of the muscles of the hip and shoulder areas. Due to the inherent instability of calpain 3, recombinant expression of the full-length enzyme has not been possible, making in vitro analysis of specific LGMD2A-causing mutations difficult. However, because calpain 3 is highly similar in amino acid sequence to calpain 2, the recently solved crystal structure of full-length, Ca2+-bound, calpastatin-inhibited rat calpain 2 has allowed us to model calpain 3 as a Ca2+-bound homodimer. The model revealed three distinct areas of the enzyme that undergo a large conformational change upon Ca2+-binding. Located in these areas are several residues that undergo mutation to cause LGMD2A. We investigated the in vitro effects of six of these mutations by making the corresponding mutations in rat calpain 2. All six mutations examined in this study resulted in a decrease in enzyme activity. All but one of the mutations caused an increased rate of autoproteolytic degradation of the enzyme as witnessed by SDS-PAGE, indicating the decrease in enzyme activity is caused, at least in part, by an increase in the rate of autoproteolytic degradation. The putative in vivo effects of these mutations on calpain 3 activity are discussed with respect to their ability to cause LGMD2A.
Resumo:
Dystroglycan, which serves as a major extracellular matrix receptor in muscle and the central nervous system, requires extensive O-glycosylation to function. We identified a dystroglycan missense mutation (Thr192→Met) in a woman with limb-girdle muscular dystrophy and cognitive impairment. A mouse model harboring this mutation recapitulates the immunohistochemical and neuromuscular abnormalities observed in the patient. In vitro and in vivo studies showed that the mutation impairs the receptor function of dystroglycan in skeletal muscle and brain by inhibiting the post-translational modification, mediated by the glycosyltransferase LARGE, of the phosphorylated O-mannosyl glycans on α-dystroglycan that is required for high-affinity binding to laminin.
Resumo:
Specific point mutations in caveolin-3, a predominantly muscle-specific member of the caveolin family, have been implicated in limb-girdle muscular dystrophy and in rippling muscle disease. We examined the effect of these mutations on caveolin-3 localization and function. Using two independent assay systems, Raf activation in fibroblasts and neurite extension in PC12 cells, we show that one of the caveolin-3 point mutants, caveolin-3-C71W, specifically inhibits signaling by activated H-Ras but not by K-Ras. To gain insights into the effect of the mutant protein on H-Ras signaling, we examined the localization of the mutant proteins in fibroblastic cells and in differentiating myotubes. Unlike the previously characterized caveolin-3-DGV mutant, the inhibitory caveolin-3-C71W mutant reached the plasma membrane and colocalized with wild type caveolins. In BHK cells, caveolin-3-C71W associated with caveolae and in differentiating muscle cells with the developing T-tubule system. In contrast, the caveolin-3-P104L mutant accumulated in the Golgi complex and had no effect on H-Ras-mediated Raf activation. Inhibition by caveolin-3-C71W was rescued by cholesterol addition, suggesting that the mutant protein perturbs cholesterol-rich raft domains. Thus, we have demonstrated that a naturally occurring caveolin-3 mutation can inhibit signaling involving cholesterol-sensitive raft domains.
Resumo:
Calpain 3 is a member of the calpain family of calcium-dependent intracellular proteases. Thirteen years ago it was discovered that mutations in calpain 3 (CAPN3) result in an autosomal recessive and progressive form of limb girdle muscular dystrophy called limb girdle muscular dystrophy type 2A. While calpain 3 mRNA is expressed at high levels in muscle and appears to have some role in developmental processes, muscles of patients and mice lacking calpain 3 still form apparently normal muscle during prenatal development; thus, a functional calpain 3 protease is not mandatory for muscle to form in vivo but it is a pre-requisite for muscle to remain healthy. Despite intensive research in this field, the physiological substrates of the calpain 3 protein (hereafter referred to as CAPN3) and its alternatively spliced isoforms remain elusive. The existence of these multiple isoforms complicates the search for the physiological functions of CAPN3 and its pathophysiological role. In this review, we summarize the genetic and biochemical evidence that point to loss of function of the full-length isoform of CAPN3, also known as p94, as the pathogenic isoform. We also argue that its natural substrates must reside in its proximity within the sarcomere where it is stored in an inactive state anchored to titin. We further propose that CAPN3 has many attributes that make it ideally suited as a sensor of sarcomeric integrity and function, involved in its repair and maintenance. Loss of these CAPN3-mediated activities can explain the "progressive" development of muscular dystrophy.
Resumo:
Calpain 3 is a member of the calpain family of calcium-dependent intracellular proteases. Thirteen years ago it was discovered that mutations in calpain 3 (CAPN3) result in an autosomal recessive and progressive form of limb girdle muscular dystrophy called limb girdle muscular dystrophy type 2A. While calpain 3 mRNA is expressed at high levels in muscle and appears to have some role in developmental processes, muscles of patients and mice lacking calpain 3 still form apparently normal muscle during prenatal development; thus, a functional calpain 3 protease is not mandatory for muscle to form in vivo but it is a pre-requisite for muscle to remain healthy. Despite intensive research in this field, the physiological substrates of the calpain 3 protein (hereafter referred to as CAPN3) and its alternatively spliced isoforms remain elusive. The existence of these multiple isoforms complicates the search for the physiological functions of CAPN3 and its pathophysiological role. In this review, we summarize the genetic and biochemical evidence that point to loss of function of the full-length isoform of CAPN3, also known as p94, as the pathogenic isoform. We also argue that its natural substrates must reside in its proximity within the sarcomere where it is stored in an inactive state anchored to titin. We further propose that CAPN3 has many attributes that make it ideally suited as a sensor of sarcomeric integrity and function, involved in its repair and maintenance. Loss of these CAPN3-mediated activities can explain the "progressive" development of muscular dystrophy.
Resumo:
Limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of disorders characterized by progressive degeneration of skeletal muscle caused by the absence of or defective muscular proteins. The murine model for limb-girdle muscular dystrophy 2B (LGMD2B), the SJL mice, carries a deletion in the dysferlin gene that causes a reduction in the protein levels to 15% of normal. The mice show muscle weakness that begins at 4-6 weeks and is nearly complete by 8 months of age. The possibility of restoring the defective muscle protein and improving muscular performance by cell therapy is a promising approach for the treatment of LGMDs or other forms of progressive muscular dystrophies. Here we have injected human adipose stromal cells (hASCs) into the SJL mice, without immunosuppression, aiming to assess their ability to engraft into recipient dystrophic muscle after systemic delivery; form chimeric human/mouse muscle fibers; express human muscle proteins in the dystrophic host and improve muscular performance. We show for the first time that hASCs are not rejected after systemic injection even without immunosuppression, are able to fuse with the host muscle, express a significant amount of human muscle proteins, and improve motor ability of injected animals. These results may have important applications for future therapy in patients with different forms of muscular dystrophies.
Resumo:
BACKGROUND: Dysferlin is reduced in patients with limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment myopathy, and in certain Ethnic clusters. METHODS: We evaluated clinical and genetic patient data from three different Swiss Neuromuscular Centers. RESULTS: Thirteen patients from 6 non-related families were included. Age of onset was 18.8 ± 4.3 years. In all patients, diallelic disease-causing mutations were identified in the DYSF gene. Nine patients from 3 non-related families from Central Switzerland carried the identical homozygous mutation, c.3031 + 2T>C. A possible founder effect was confirmed by haplotype analysis. Three patients from two different families carried the heterozygous mutation, c.1064_1065delAA. Two novel mutations were identified (c.2869C>T (p.Gln957Stop), c.5928G>A (p.Trp1976Stop)). CONCLUSIONS: Our study confirms the phenotypic heterogeneity associated with DYSF mutations. Two mutations (c.3031 + 2T>C, c.1064_1065delAA) appear common in Switzerland. Haplotype analysis performed on one case (c. 3031 + 2T>C) suggested a possible founder effect.
Resumo:
Les dystrophies musculaires des ceintures (ou limb-girdle muscular dystrophy, LGMD) sont un groupe hétérogène de dystrophies musculaires chez l’adulte et sont définies par une atrophie et une faiblesse progressive qui surviennent dans les muscles proximaux. Chez une cohorte canadienne-française, nous avons précédemment décrit une nouvelle forme récessive, désignée LGMD2L et marquée par une atrophie asymétrique du quadriceps, que nous avions cartographiée au chromosome 11p12-p13 grâce à des analyses de liaison. L’objectif de ce projet de thèse était de raffiner l’intervalle candidat, puis d’identifier et de caractériser le gène muté responsable de la LGMD2L. Grâce à une cartographie par homozygotie de polymorphismes de nucléotide simple (SNPs) réalisée sur une grande famille consanguine, nous avons redéfini l’intervalle candidat à une région du chromosome 11p14.3-p15.1. Par séquençage de l’ADN génomique et complémentaire au gène Anoctamine 5 (ANO5) inclus dans cet intervalle, nous avons identifié trois mutations, chez autant de familles: une substitution créant un site d’épissage aberrant, une insertion d’un nucléotide et une mutation faux-sens. Les deux premières mutations étaient associées à une hausse de la dégradation de l’ARN messager médiée par une troncation prématurée. Nous avons également identifié des mutations ANO5 chez une seconde dystrophie musculaire de type distal cartographiant au même locus que la LGMD2L, nommée MMD3, et dont la manifestation initiale était une faiblesse des mollets, mais qui pouvait progresser vers une atrophie des quadriceps. Une réparation membranaire défective avait été observée chez les fibroblastes de deux patients MMD3, suggérant un rôle pour ANO5 dans ce mécanisme. La localisation et la fonction d’ANO5 dans le muscle sont inconnues, mais cette protéine fait partie d’une famille conservée de protéines à huit domaines transmembranaires, les Anoctamines, dont certains membres sont des transporteurs chloriques activés par le calcium. Les résultats de nos études d’immunofluorescence suggèrent qu’ANO5 se localise peu au sarcolemme, mais plutôt à une structure intracellulaire qui suit la ligne Z des myofibrilles. De façon étonnante, cette localisation était préservée chez un patient LGMD2L porteur homozygote de la mutation d’épissage, en dépit du fait que cette dernière était considérée comme une mutation nulle. Néanmoins, nous avons identifié un épissage alternatif de l’exon 15 qui se produisait sur une proportion des transcrits porteurs de la mutation d’épissage, ce qui rétablirait le cadre de lecture, soulignant la complexité de la régulation de l’épissage d’ANO5 et laissant croire que la LGMD2L pourrait être causée par une perte de fonction partielle, et non complète, d’ANO5. Des études subséquentes par des groupes européens ont montré que les anoctaminopathies 5 sont une cause fréquente de dystrophies musculaires des ceintures chez l’adulte. Notre découverte de mutations au gène Anoctamine 5 a mis en évidence une nouvelle classe de protéines importantes pour la biologie du muscle et a ouvert la voie à de nouvelles pistes pour étudier les mécanismes par lesquels un défaut de réparation membranaire progresse en une dystrophie musculaire.
Resumo:
Limb girdle muscular dystrophy type 2H (LGMD2H) is an inherited autosomal recessive disease of skeletal muscle caused by a mutation in the TRIM32 gene. Currently its pathogenesis is entirely unclear. Typically the regeneration process of adult skeletal muscle during growth or following injury is controlled by a tissue specific stem cell population termed satellite cells. Given that TRIM32 regulates the fate of mammalian neural progenitor cells through controlling their differentiation, we asked whether TRIM32 could also be essential for the regulation of myogenic stem cells. Here we demonstrate for the first time that TRIM32 is expressed in the skeletal muscle stem cell lineage of adult mice, and that in the absence of TRIM32, myogenic differentiation is disrupted. Moreover, we show that the ubiquitin ligase TRIM32 controls this process through the regulation of c-Myc, a similar mechanism to that previously observed in neural progenitors. Importantly we show that loss of TRIM32 function induces a LGMD2H-like phenotype and strongly affects muscle regeneration in vivo. Our studies implicate that the loss of TRIM32 results in dysfunctional muscle stem cells which could contribute to the development of LGMD2H.
Resumo:
Limb-girdle muscular dystrophies are a heterogeneous group of disorders characterized by progressive degeneration of skeletal muscle caused by the absence or deficiency of muscle proteins. The murine model of Limb-Girdle Muscular Dystrophy 2B, the SJL mice, carries a deletion in the dysferlin gene. Functionally, this mouse model shows discrete muscle weakness, starting at the age of 4-6 weeks. The possibility to restore the expression of the defective protein and improve muscular performance by cell therapy is a promising approach for the future treatment of progressive muscular dystrophies (PMD). We and others have recently shown that human adipose multipotent mesenchymal stromal cells (hASCs) can differentiate into skeletal muscle when in contact with dystrophic muscle cells in vitro and in vivo. Umbilical cord tissue and adipose tissue are known rich sources of multipotent mesenchymal stromal cells (MSCs), widely used for cell-based therapy studies. The main objective of the present study is to evaluate if MSCs from these two different sources have the same potential to reach and differentiate in muscle cells in vivo or if this capability is influenced by the niche from where they were obtained. In order to address this question we injected human derived umbilical cord tissue MSCs (hUCT MSCs) into the caudal vein of SJL mice with the same protocol previously used for hASCs; we evaluated the ability of these cells to engraft into recipient dystrophic muscle after systemic delivery, to express human muscle proteins in the dystrophic host and their effect in functional performance. These results are of great interest for future therapeutic application.
Resumo:
To better understand the structure and function of Z lines, we used sarcomeric isoforms of α-actinin and γ-filamin to screen a human skeletal muscle cDNA library for interacting proteins by using the yeast two-hybrid system. Here we describe myozenin (MYOZ), an α-actinin- and γ-filamin-binding Z line protein expressed predominantly in skeletal muscle. Myozenin is predicted to be a 32-kDa, globular protein with a central glycine-rich domain flanked by α-helical regions with no strong homologies to any known genes. The MYOZ gene has six exons and maps to human chromosome 10q22.1-q22.2. Northern blot analysis demonstrated that this transcript is expressed primarily in skeletal muscle with significantly lower levels of expression in several other tissues. Antimyozenin antisera stain skeletal muscle in a sarcomeric pattern indistinguishable from that seen by using antibodies for α-actinin, and immunogold electron microscopy confirms localization specifically to Z lines. Thus, myozenin is a skeletal muscle Z line protein that may be a good candidate gene for limb-girdle muscular dystrophy or other neuromuscular disorders.
Resumo:
OBJECTIVE: To describe a new entity of congenital muscular dystrophies caused by de novo LMNA mutations. METHODS: Fifteen patients presenting with a myopathy of onset in the first year of life were subjected to neurological and genetic evaluation. Histopathological and immunohistochemical analyses were performed for all patients. RESULTS: The 15 patients presented with muscle weakness in the first year of life, and all had de novo heterozygous LMNA mutations. Three of them had severe early-onset disease, no motor development, and the rest experienced development of a "dropped head" syndrome phenotype. Despite variable severity, there was a consistent clinical pattern. Patients typically presented with selective axial weakness and wasting of the cervicoaxial muscles. Limb involvement was predominantly proximal in upper extremities and distal in lower extremities. Talipes feet and a rigid spine with thoracic lordosis developed early. Proximal contractures appeared later, most often in lower limbs, sparing the elbows. Ten children required ventilatory support, three continuously through tracheotomy. Cardiac arrhythmias were observed in four of the oldest patients but were symptomatic only in one. Creatine kinase levels were mild to moderately increased. Muscle biopsies showed dystrophic changes in nine children and nonspecific myopathic changes in the remaining. Markedly atrophic fibers were common, most often type 1, and a few patients showed positive inflammatory markers. INTERPRETATION: The LMNA mutations identified appear to correlate with a relatively severe phenotype. Our results further broaden the spectrum of laminopathies and define a new disease entity that we suggest is best classified as a congenital muscular dystrophy (LMNA-related congenital muscular dystrophy, or L-CMD).
Resumo:
Dogs suffering from Golden Retriever muscular dystrophy (GRMD) present symptoms that are similar to human patients with Duchenne muscular dystrophy (DMD). Phenotypic variability is common in both cases and correlates with disease progression and response to therapy. Physical therapy assessment tools were used to study disease progression and assess phenotypic variability in dogs with GRMD. At 5 (TO), 9 (T1), 13 (T2) and 17 (T3) months of age, the physical features, joint ranges of motion (ROM), limb and thorax circumferences, weight and creatine kinase (CK) levels were assessed in 11 dogs with GRMD. Alterations of physical features were higher at 13 months, and different disease progression rates were observed. Passive ROM decreased until 1 year old, which was followed by a decline of elbow and tarsal ROM. Limb and thorax circumferences, which were corrected for body weight, decreased significantly between TO and T3. These measurements can be used to evaluate disease progression in dogs with GRMD and to help discover new therapies for DMD patients. (C) 2011 Elsevier Ltd. All rights reserved.