264 resultados para lightning overvoltages
Resumo:
As wind power generation undergoes rapid growth, lightning and overvoltage incidents involving wind power plants have come to be regarded as a serious problem. Firstly, lightning location systems are discussed, as well as important parameters regarding lightning protection. Also, this paper presents a case study, based on a wind turbine with an interconnecting transformer, for the study of adequate lightning and overvoltage protection measures. The electromagnetic transients circuit under study is described, and computational results are presented.
Resumo:
This paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Overhead distribution lines are often exposed to lightning overvoltages, whose waveforms vary widely and can differ substantially from the standard impulse voltage waveform (1,2 - 50). Different models have been proposed for predicting the strength of insulation subjected to impulses of non-standard waveforms. One of the most commonly used is the disruptive effect model, for which there are different methods for the estimation of the parameters required for its application. This paper aims at evaluating the dielectric behavior of medium voltage insulators subjected to impulses of non-standard waveforms, as well as at evaluating two methods for predicting their dielectric strength against such impulses. The test results relative to the critical lightning impulse flashover voltage (U50) and the volt-time characteristics obtained for the positive and negative polarities of different voltage waveforms are presented and discussed.
Resumo:
This paper presents an analysis of the impact of the lightning overvoltages on the operational performance of the energized shield wire line technology (SWL) implemented in two locations of the State of Rondonia, Brazil. The analysis covers the periods of 1996 to 2000 (SWL Jaru) and 1997 to 2002 (SWL Itapua do Oeste), and shows that lightning is responsible for most of the system outages. The paper describes the satisfactory results achieved with the system, showing that the isolation and energization of the shield wires does not deteriorate the lightning performance of the 230 kV transmission lines. Comparisons between the performances of the SWL technology, conventional 34.5 kV lines, and thermal power plants in operation in the same region are also presented. The results demonstrate the technical and economical viability of the SWL technology and show that its application can lead to a postponement of investments.
Resumo:
This paper is concerned with direct or indirect lightning strokes on wind turbines, studying overvoltages and electromagnetic transients. As wind power generation undergoes rapid growth, lightning damages involving wind turbines have come to be regarded with more attention. With the aim of providing further insights into the lightning protection of wind turbines, describing the transient behavior in an accurate way, the restructured version (RV) of the electromagnetic transients program (EMTP) is used in this paper. A new case study is presented with two interconnected wind turbines, considering a direct lightning stroke to the blade or considering that lightning strikes the soil near a tower. Comprehensive computer simulations with EMTP-RV are presented and conclusions are duly drawn.
Resumo:
This paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. © 2009 The Berkeley Electronic Press. All rights reserved.
Resumo:
This paper presents evidence of an apparent connection between ball lightning and a green fireball. On the evening of the 16th May 2006 at least three fireballs were seen by many people in the skies of Queensland, Australia. One of the fireballs was seen passing over the Great Divide about 120 km west of Brisbane, and soon after, a luminous green ball about 30 cm in diameter was seen rolling down the slope of the Great Divide. A detailed description given by a witness indicates that the phenomenon was probably a highly luminous form of ball lightning. An hypothesis presented in this paper is that the passage of the Queensland fireball meteor created an electrically conductive path between the ionosphere and ground, providing energy for the ball lightning phenomenon. A strong similarity is noted between the Queensland fireball and the Pasamonte fireball seen in New Mexico in 1933. Both meteors exhibit a twist in the tail that could be explained by hydrodynamic forces. The possibility that multiple sightings of fireballs across South East Queensland were produced owing to fragments from comet 73P Schwassmann-Wachmann 3 is discussed.
Resumo:
The close relationship between rain and lightning is well known. However, there are numerous documented observations of heavy rain accompanied by little or no lightning activity (Williams et al, 1992; Jayaratne, 1993). Kuleshov et al (2002) studied thunderstorm distribution and frequency in Australia and concluded that thunderstorm frequency (as expressed by number of thunder-days) in Australia does not, in general, appear to vary in any consistent way with rainfall. However, thunder-days describe occurrence of thunderstorms as heard by an observer, and therefore could be only proxy data to evaluate actual lightning activity (i.e. number of total or cloud-to-ground flashes). Field experiments have demonstrated a strong increase in lightning activity with convective available potential energy (CAPE). It has also been shown that CAPE increases linearly with potential wet bulb temperature, Tw (Williams et al, 1992). In this study, we examine the relationship between lightning ground flash incidence and the two parameters – surface rainfall and surface wet bulb maximum temperature for selected localities around Australia...
Resumo:
An in-depth knowledge about the characteristics of lightning generated currents will facilitate evaluation of the interception efficacy of lightning protection systems. In addition, it would aid in extraction of valuable statistics (from measured current data) on local lightning parameters. Incidentally, present day knowledge on characteristics of lightning induced current in typical lightning protection systems is rather limited. This is particularly true with closely interconnected protection systems, like the one employed in Indian Satellite Launch Pad-II. This system is taken as a specific example in the present study. Various aspects suggest that theoretical modelling would be the best possible approach for the intended work. From the survey of pertinent literature, it is concluded that electromagnetic modelling of lightning return-stroke with current source at the channel base is best suited for this study. Numerical electromagnetic code was used for the required electromagnetic field solution and Fourier transform techniques were employed for computing time-domain results. A validation for the numerical modelling is provided by laborator experiments on a reduced scale model of the system. Apart from ascertaining the influence of various parameters, salient characteristics of tower base currents for different kinds of events are deduced. This knowledge can be used in identifying the type of event, as well as its approximate location. A method for estimation of injected stroke current has also been proposed.
Resumo:
The paper furnishes a review and air ovendepr "f radio noise *om lightning as rr so~irce of interference to analogue and digital Corn?tunicatioiz. The parameters of fhe different fornls < f, noise necessary .for pssessigth e interfering effect of the rloise are described. 4railublr irfjrncroiun thrr tndevstor71zs, thunder-clouds, convecrion cells and lightning are er ieveadn d their liizitatimsp ointed oui. Thew fol101r.s a descripiicn of how the source, popugafiona nd receiver chaacteristidse termine the sfrticture qf a/rnosplro.ic noise as receiwd at a point of observation. The tratrrral unit for this noise i.s the mise burst rtrising from o w complete lightning.flas4. The pmuneters of the nrise birrst as a 11.hole and its structure ctetennine the inrqfflrrence enrirnniient. A hisforic reriel$. qf t2sophericii oke .studies sho1(5 that it i. wrreirt(v of importance oldy in thc ropicarl egions of' the wr ldf i>rs hichf hc neailable data are wry defective. New data are ficnrished. The contribution of atmospheric noise for backgrouzd interference even in remote places ,for r.adicj astronomy at VHF is firrnished. The imporlance of aimcspizeric nctise cceurring ;vporadiea@ in high values fur slzort inier.als at VHF and higher frequencies in the tropics is brought out.
Resumo:
A reliable protection against direct lightning hit is very essential for satellite launch pads. In view of this, suitable protection systems are generally employed. The evaluation of efficacy of the lightning protection schemes among others requires an accurate knowledge of the consequential potential rise at the struck point and the current injected into soil at the earth termination. The present work has made a detailed effort to deduce these quantities for the lightning protection scheme of the Indian satellite launch pad-I. A reduced scale model of the system with a frequency domain approach is employed for the experimental study. For further validation of the experimental approach, numerical simulations using numerical electromagnetic code-2 are also carried out on schemes involving single tower. The study results on the protection system show that the present design is quite safe with regard to top potential rise. It is shown that by connecting ground wires to the tower, its base current and, hence, the soil potential rise can be reduced. An evaluation of an alternate design philosophy involving insulated mast scheme is also made. The potential rise in that design is quantified and the possibility of a flashover to supporting tower is briefly looked into. The supporting tower is shown to have significant induced currents.
Resumo:
The dissertation deals with remote narrowband measurements of the electromagnetic radiation emitted by lightning flashes. A lightning flash consists of a number of sub-processes. The return stroke, which transfers electrical charge from the thundercloud to to the ground, is electromagnetically an impulsive wideband process; that is, it emits radiation at most frequencies in the electromagnetic spectrum, but its duration is only some tens of microseconds. Before and after the return stroke, multiple sub-processes redistribute electrical charges within the thundercloud. These sub-processes can last for tens to hundreds of milliseconds, many orders of magnitude longer than the return stroke. Each sub-process causes radiation with specific time-domain characteristics, having maxima at different frequencies. Thus, if the radiation is measured at a single narrow frequency band, it is difficult to identify the sub-processes, and some sub-processes can be missed altogether. However, narrowband detectors are simple to design and miniaturize. In particular, near the High Frequency band (High Frequency, 3 MHz to 30 MHz), ordinary shortwave radios can, in principle, be used as detectors. This dissertation utilizes a prototype detector which is essentially a handheld AM radio receiver. Measurements were made in Scandinavia, and several independent data sources were used to identify lightning sub-processes, as well as the distance to each individual flash. It is shown that multiple sub-processes radiate strongly near the HF band. The return stroke usually radiates intensely, but it cannot be reliably identified from the time-domain signal alone. This means that a narrowband measurement is best used to characterize the energy of the radiation integrated over the whole flash, without attempting to identify individual processes. The dissertation analyzes the conditions under which this integrated energy can be used to estimate the distance to the flash. It is shown that flash-by-flash variations are large, but the integrated energy is very sensitive to changes in the distance, dropping as approximately the inverse cube root of the distance. Flashes can, in principle, be detected at distances of more than 100 km, but since the ground conductivity can vary, ranging accuracy drops dramatically at distances larger than 20 km. These limitations mean that individual flashes cannot be ranged accurately using a single narrowband detector, and the useful range is limited to 30 kilometers at the most. Nevertheless, simple statistical corrections are developed, which enable an accurate estimate of the distance to the closest edge of an active storm cell, as well as the approach speed. The results of the dissertation could therefore have practical applications in real-time short-range lightning detection and warning systems.