925 resultados para light-dark cycle
Resumo:
The effects of ocean acidification on the life-cycle stages of the coccolithophore Emiliania huxleyi and their by light were examined. Calcifying diploid and noncalcifying haploid cells (Roscoff culture collection 1216 and 1217) were acclimated to present-day and elevated CO2 partial pressures (PCO2; 38.5 vs. 101.3 Pa, ., 380 vs. 1000 matm) under low and high light (50 vs. 300 mmol photons m-2 s-1). Growth rates as well as quotas and production rates of C and N were measured. Sources of inorganic C for biomass buildup were using a 14C disequilibrium assay. Photosynthetic O2 evolution was measured as a function of dissolved inorganic C and light by means of membrane-inlet mass spectrometry. The diploid stage responded to elevated PCO2 by shunting resources from the production of particulate inorganic C toward organic C yet keeping the production of total particulate C constant. As the effect of ocean acidification was stronger under low light, the diploid stage might be less affected by increased acidity when energy availability is high. The haploid stage maintained elemental composition and production rates under elevated PCO2. Although both life-cycle stages involve different ways of dealing with elevated PCO2, the responses were generally modulated by energy availability, being typically most pronounced under low light. Additionally, PCO2 responses resembled those induced by high irradiances, indicating that ocean acidification affects the interplay between energy-generating processes (photosynthetic light reactions) and processes competing for energy (biomass buildup and calcification). A conceptual model is put forward explaining why the magnitude of single responses is determined by energy availability.
Resumo:
BACKGROUND: Previously, tachyplesin gene (tac) has been successfully transferred into Undaria pinnatifida gametophytes using the method of microprojectile bombardment transformation. The objectives of this study were to compare and evaluate the performance of bubble-column and airlift bioreactors to determine a preferred configuration of bioreactor for vegetative propagation of transgenic U. pinnatifida gametophytes, and to then investigate the influence of light on vegetative propagation of these gametophytes, including incident light intensity, photoperiod and light quality to resolve the problems of rapid vegetative propagation within the selected bioreactor. RESULTS: Experimental results showed that final dry cell density in the airlift bioreactor was 12.7% higher than that in the bubble-column bioreactor under the optimal aeration rate of 1.2 L air min(-1) L-1 culture. And a maximum final dry cell density of 2830 mg L-1 was obtained within the airlift bioreactor using blue light at 40 mu mol m(-2) s(-1) with a light/dark cycle of 14/10 (h). Polymerase chain reaction (PCR) analysis indicated that genes (bar and tac) were not lost during rapid vegetative propagation within the airlift bioreactor. CONCLUSION: The airlift bioreactor was shown to be much more suitable for rapid vegetative propagation of transgenic U. pinnatifida gametophytes than the bubble-column bioreactor in the laboratory. The use of blue light allows improvement of vegetative propagation of transgenic U. pinnatifida gametophytes. (C) 2009 Society of Chemical Industry
Resumo:
PURPOSE: Mutations in the Prominin-1 (Prom1) gene are known to cause retinitis pigmentosa and Stargardt disease, both of which are associated with progressive photoreceptor cell death. There are no effective therapies for either disorder. The aim of this study was to investigate the mechanism of the retinal degeneration in Prom1-deficient mouse models.
METHODS: We constructed Prom1 knockout mice with two distinct genetic backgrounds of C57BL/6 and C57BL/6xCBA/NSlc, and investigated the photoreceptor degeneration by means of histology and functional tests.. In addition, we examined the effect of light on the Prom1(-/-) retina by rearing the mice in the normal light/dark cycle and completely dark conditions. Finally, we investigated if the retinoic-acid derivative Fenretinide slowed the pace of retinal degeneration in these mouse models.
RESULTS: The Prom1(-/-)-knockout mice with both backgrounds developed photoreceptor degeneration after eye opening, but the CB57/BL6-background mice developed photoreceptor cell degeneration much faster than the C57BL/6xCBA/NSlc mice, demonstrating genetic background dependency.. Interestingly, our histologic and functional examination showed that the photoreceptor cell degeneration of Prom1-knockout mice was light-dependent, and was almost completely inhibited when the mutant mice were kept in the dark. The Prom1-knockout retina showed strong downregulation of expression of the visual cycle components, Rdh12 and Abca4. Furthermore, administration of Fenretinide, which lowers the level of the toxic lipofuscin, slowed the degeneration of photoreceptor cells.
CONCLUSIONS: These findings improve our understanding of the mechanism of cell death in Prominin-1-related disease and provide evidence that fenretinide may be worth studying in human disease.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
The avian circadian system is composed of the retina, the mammalian homolog region of the suprachiasmatic nucleus (SNC), and the pineal gland. The retina, itself, displays many rhythmic physiological events, such as movements of photoreceptor cells, opsin expression, retinal reisomerization, and melatonin and dopamine production and secretion. Altogether, these rhythmic events are coordinated to predict environmental changes in light conditions during the day, optimizing retina function. The authors investigated the expression pattern of the melanopsin genes Opn4x and Opn4m, the clock genes Clock and Per2, and the genes for the key enzymes N-Acetyltransferase and Tyrosine Hidroxylase in chicken embryo dispersed retinal cells. Primary cultures of chicken retina from 8-day-old embryos were kept in constant dark (DD), in 12-h light/12-h dark (12L:12D), in 12L:12D followed by DD, or in DD in the absence or presence of 100 mu M glutamate for 12 h. Total RNA was extracted throughout a 24-h span, every 3 h starting at zeitgeber time 0 (ZT0) of the 6th day, and submitted to reverse transcriptase-polymerase chain reaction (RT-PCR) followed by quantitative PCR (qPCR) for mRNA quantification. The data showed no rhythmic pattern of transcription for any gene in cells kept in DD. However under a light-dark cycle, Clock, Per2, Opn4m, N-Acetyltransferase, and Tyrosine Hydroxylase exhibited rhythmic patterns of transcription. In DD, 100 mu M glutamate was able to induce rhythmic expression of Clock, strongly inhibited the expression of Tyrosine Hydroxylase, and, only at some ZTs, of Opn4x and Opn4m. The neurotransmitter had no effect on Per2 and N-Acetyltransferase transcription. The authors confirmed the expression of the protein OPN4x by immunocytochemistry. These results suggest that chicken embryonic retinal cells contain a functional circadian clock, whose synchronization requires light-dark cycle or glutamate stimuli. (Author correspondence: amdlcast@ib.usp.br).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We show the results and discussions of the study of a possible suppression of the extragalactic neutrino flux during its propagation due to a nonstandard interaction with a candidate field to dark matter. In particular, we show the study of neutrino interaction with an ultra-light scalar field. It is shown that the extragalactic neutrino flux may be suppressed by such an interaction, leading to a mechanism to reduce the ultra-high energy neutrino flux. We calculate both the cases of non-self-conjugate as well as self-conjugate ultra-light dark matter. In the first case, the suppression is independent of the neutrino and dark matter masses. We conclude that care must be taken when explaining limits on the neutrino flux through source acceleration mechanisms only, since there could be other mechanisms, as absorption during propagation, for the reduction of the neutrino flux [1], © Published under licence by IOP Publishing Ltd.
Resumo:
The present work aimed at studying the influence of the estrous cycle in the forced swim test, an animal model of depression. For this, 44 male and female Wistar rats were divided into five groups according to the hormonal state in the first day of the study: metaestrus (N = 12), diestrus (N = 8), proestrus (N = 7), estrous (N = 6) and males (N = 11). They were housed in groups of five, with water and food ad libitum under a 12/12 h light/dark cycle. Females were screened daily for the estrous cycle. The animals were subjected to two swimming sessions in a glass cylinder with water up to 15 cm at 28±2º C. The data of the first five minutes of a 15-min first session were compared to those of a 5-min second session 24 h later. The results indicate that the latency to the first immobility was substantially reduced in the second session and was longer for females in diestrus and proestrus in the first session. The results also indicate that females in diestrus and proestrus exhibited less immobility than males in the first session; females in diestrus also exhibited less immobility than females in metaestrus. Females in metaestrus and diestrus, as well as males, did not present the decrease in total immobility times in the second session. The present results are analyzed in terms of differential effects of progesterone and estrogen on a learning component and an affective component.
Resumo:
Estímulos ambientais exercem efeitos importantes na expressão de ritmos endógenos. Deslocamentos diários de grupos de psitacídeos em resposta ao ciclo claro/escuro têm sido estudados por alguns autores. Todavia, os fatores que influenciam a ritmicidade intrínseca deste comportamento não são bem conhecidos. Este estudo descreve como a periodicidade nictemeral/circadiana dos deslocamentos diários de dormitórios do Papagaio-do-mangue Amazona amazonica é modificada por fatores climatológicos. Os números de papagaios chegando ou deixando o dormitório Ilha dos Papagaios foram determinados de minuto a minuto. Um número significativamente maior de papagaios chegou ao dormitório após o ocaso, enquanto que um número significativamente maior de papagaios deixou o dormitório antes da aurora. O pico de saída dos papagaios ocorreu 23 ± 5,24 minutos antes da aurora, quando a média de intensidade de luz era de 1 lux. O pico de chegada de papagaios ocorreu 6 ± 6,1 minutos após o ocaso, quando a média de intensidade de luz era de 50 lux. Ao alterar a intensidade de luz do ambiente, as condições climatológicas influenciaram significativamente os horários de chegada e saída, com papagaios deixando o dormitório mais tarde ou chegando mais cedo em condições de nebulosidade alta.
Resumo:
Subterranean organisms are excellent models for chronobiological studies, yet relatively few taxa have been investigated with this focus. Former results were interpreted as a pattern of regression of circadian locomotor activity rhythms in troglobitic (exclusively subterranean) species. In this paper we report results of experiments with cave fishes showing variable degrees of troglomorphism (reduction of eyes, melanic pigmentation and other specializations related to the hypogean life) submitted to light-dark cycles, preceded and followed by several days in constant darkness. Samples from seven species have been monitored in our laboratory for the detection of significant circadian rhythms in locomotor activity: S. typhlops, an extremely troglomophic species, presented the lowest number of significant components in the circadian range (only one individual out of eight in DD1 and three other fish in LD), all weak (low values of spectral power). Higher incidence of circadian components was observed for P. kronei - only one among six studied catfish without significant circadian rhythms under DD1 and DD2; spectral powers were generally high. Intermediate situations were observed for the remaining species, however all of them presented relatively strong significant rhythms under LD. Residual oscillations (circadian rhythms in DD2) were detected in at least part of the studied individuals of all species but S. typhlops, without a correlation with spectral powers of LD rhythms, i.e., individuals exhibiting residual oscillations were not necessarily those with the strongest LD rhythms. In conclusion, the accumulated evidence for troglobitic fishes strongly supports the hypothesis of external, environmental selection for circadian locomotor rhythms.
Resumo:
Ocean acidification is expected to lower the net accretion of coral reefs yet little is known about its effect on coral photophysiology. This study investigated the effect of increasing CO2 on photosynthetic capacity and photoprotection in Acropora formosa. The photoprotective role of photorespiration within dinoflagellates (genus Symbiodinium) has largely been overlooked due to focus on the presence of a carbon-concentrating mechanism despite the evolutionary persistence of a Form II Rubisco. The photorespiratory fixation of oxygen produces phosphoglycolate that would otherwise inhibit carbon fixation though the Calvin cycle if it were not converted to glycolate by phosphoglycolate phosphatase (PGPase). Glycolate is then either excreted or dealt with by enzymes in the photorespiratory glycolate and/or glycerate pathways adding to the pool of carbon fixed in photosynthesis. We found that CO2 enrichment led to enhanced photoacclimation (increased chlorophyll a per cell) to the subsaturating light levels. Light-enhanced dark respiration per cell and xanthophyll de-epoxidation increased, with resultant decreases in photosynthetic capacity (Pnmax) per chlorophyll. The conservative CO2 emission scenario (A1B; 600-790 ppm) led to a 38% increase in the Pnmax per cell whereas the 'business-as-usual' scenario (A1F1; 1160-1500 ppm) led to a 45% reduction in PGPase expression and no change in Pnmax per cell. These findings support an important functional role for PGPase in dinoflagellates that is potentially compromised under CO2 enrichment.