909 resultados para lid surfacing anomaly
Resumo:
Automated visual surveillance of crowds is a rapidly growing area of research. In this paper we focus on motion representation for the purpose of abnormality detection in crowded scenes. We propose a novel visual representation called textures of optical flow. The proposed representation measures the uniformity of a flow field in order to detect anomalous objects such as bicycles, vehicles and skateboarders; and can be combined with spatial information to detect other forms of abnormality. We demonstrate that the proposed approach outperforms state-of-the-art anomaly detection algorithms on a large, publicly-available dataset.
Resumo:
Data preprocessing is widely recognized as an important stage in anomaly detection. This paper reviews the data preprocessing techniques used by anomaly-based network intrusion detection systems (NIDS), concentrating on which aspects of the network traffic are analyzed, and what feature construction and selection methods have been used. Motivation for the paper comes from the large impact data preprocessing has on the accuracy and capability of anomaly-based NIDS. The review finds that many NIDS limit their view of network traffic to the TCP/IP packet headers. Time-based statistics can be derived from these headers to detect network scans, network worm behavior, and denial of service attacks. A number of other NIDS perform deeper inspection of request packets to detect attacks against network services and network applications. More recent approaches analyze full service responses to detect attacks targeting clients. The review covers a wide range of NIDS, highlighting which classes of attack are detectable by each of these approaches. Data preprocessing is found to predominantly rely on expert domain knowledge for identifying the most relevant parts of network traffic and for constructing the initial candidate set of traffic features. On the other hand, automated methods have been widely used for feature extraction to reduce data dimensionality, and feature selection to find the most relevant subset of features from this candidate set. The review shows a trend toward deeper packet inspection to construct more relevant features through targeted content parsing. These context sensitive features are required to detect current attacks.
Resumo:
Background: Pregnant women find themselves subject to comments and questions from people in public areas. Normally, becoming ‘public property’ is considered friendly and is relatively easy for pregnant women to deal with. However, following diagnosis of a fetal anomaly, the experience of being public property can exacerbate the emotional turmoil experienced by couples. Original research question: What is the experience of couples who continue pregnancy following the diagnosis of a fetal anomaly? Method: The study used an interpretive design informed by Merleau-Ponty and this paper reports on a subset of findings. Thirty-one interviews with pregnant women and their partners were undertaken following the diagnosis of a serious or lethal fetal anomaly. Women were between 25 and 38 weeks gestation at the time of their first interview. The non-directive interviews were audiotaped, transcribed verbatim and the transcripts were thematically analysed. Findings: A prominent theme that emerged during data analysis was that pregnancy is embodied therefore physically evident and ‘public’. Women found it difficult to deal with being public property when the fetus had a serious or lethal anomaly. Some women avoided social situations; others did not disclose the fetal condition but gave minimal or avoidant answers to minimise distress to themselves and others. The male participants were not visibly pregnant and they could continue life in public without being subject to the public’s gaze, but they were very aware and concerned about its impact on their partner. Conclusion: The public tend to assume that pregnancy is normal and will produce a healthy baby. This becomes problematic for women who have a fetus with an anomaly. Women use strategies to help them cope with becoming public property during pregnancy. Midwives can play an important role in reducing the negative consequences of a woman becoming public property following the diagnosis of a fetal anomaly.
Resumo:
PURPOSE: To explore the experience of couples who continued pregnancy following a diagnosis of serious or lethal fetal anomaly. STUDY DESIGN: Thirty-one male and female participants were recruited from a high-risk maternal–fetal medicine clinic in Washington State. Data were collected using in-depth interviews during pregnancy and after the birth of their baby. Transcribed interviews were thematically analyzed through the phenomenological lens of Merleau-Ponty. FINDINGS: Participants described how time became reconfigured and reconstituted as they tried to compress a lifetime of love for their future child into a limited period. Participants’ concepts of time became distorted and were related to their perceptual lived experience rather than the schedule-filled,regimented, linear clock time that governed the health professionals. CONCLUSION: Living in distorted time may be a mechanism parents use to cope with overwhelming and disorienting feelings when their unborn baby is diagnosed with a fetal anomaly.
Resumo:
In this paper we demonstrate how to monitor a smartphone running Symbian operating system and Windows Mobile in order to extract features for anomaly detection. These features are sent to a remote server because running a complex intrusion detection system on this kind of mobile device still is not feasible due to capability and hardware limitations. We give examples on how to compute relevant features and introduce the top ten applications used by mobile phone users based on a study in 2005. The usage of these applications is recorded by a monitoring client and visualized. Additionally, monitoring results of public and self-written malwares are shown. For improving monitoring client performance, Principal Component Analysis was applied which lead to a decrease of about 80 of the amount of monitored features.
Resumo:
Online social networks can be modelled as graphs; in this paper, we analyze the use of graph metrics for identifying users with anomalous relationships to other users. A framework is proposed for analyzing the effectiveness of various graph theoretic properties such as the number of neighbouring nodes and edges, betweenness centrality, and community cohesiveness in detecting anomalous users. Experimental results on real-world data collected from online social networks show that the majority of users typically have friends who are friends themselves, whereas anomalous users’ graphs typically do not follow this common rule. Empirical analysis also shows that the relationship between average betweenness centrality and edges identifies anomalies more accurately than other approaches.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways, e.g. for payment systems or assisting the lives of elderly or disabled people. Security threats for these devices become more and more dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level and where third-party developers first time have the opportunity to develop kernel-based low-level security tools. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS, holding the greatest market share among all smartphone OSs, was even closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners privacy. Since signature-based approaches mainly detect known malwares, anomaly-based approaches can be a valuable addition to these systems. They base on mathematical algorithms processing data that describe the state of a certain device. For gaining this data, a monitoring client is needed that has to extract usable information (features) from the monitored system. Our approach follows a dual system for analyzing these features. On the one hand, functionality for on-device light-weight detection is provided. But since most algorithms are resource exhaustive, remote feature analysis is provided on the other hand. Having this dual system enables event-based detection that can react to the current detection need. In our ongoing research we aim to investigates the feasibility of light-weight on-device detection for certain occasions. On other occasions, whenever significant changes are detected on the device, the system can trigger remote detection with heavy-weight algorithms for better detection results. In the absence of the server respectively as a supplementary approach, we also consider a collaborative scenario. Here, mobile devices sharing a common objective are enabled by a collaboration module to share information, such as intrusion detection data and results. This is based on an ad-hoc network mode that can be provided by a WiFi or Bluetooth adapter nearly every smartphone possesses.
Resumo:
Anomaly detection compensates shortcomings of signature-based detection such as protecting against Zero-Day exploits. However, Anomaly Detection can be resource-intensive and is plagued by a high false-positive rate. In this work, we address these problems by presenting a Cooperative Intrusion Detection approach for the AIS, the Artificial Immune System, as an example for an anomaly detection approach. In particular we show, how the cooperative approach reduces the false-positive rate of the detection and how the overall detection process can be organized to account for the resource constraints of the participating devices. Evaluations are carried out with the novel network simulation environment NeSSi as well as formally with an extension to the epidemic spread model SIR
Resumo:
In this study, the mixed convection heat transfer and fluid flow behaviors in a lid-driven square cavity filled with high Prandtl number fluid (Pr = 5400, ν = 1.2×10-4 m2/s) at low Reynolds number is studied using thermal Lattice Boltzmann method (TLBM) where ν is the viscosity of the fluid. The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK (Bhatnagar-Gross-Krook) model. The effects of the variations of non dimensional mixed convection parameter called Richardson number(Ri) with and without heat generating source on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles as well as stream function and temperature contours for Ri ranging from 0.1 to 5.0 with other controlling parameters that present in this study. It is found that LBM has good potential to simulate mixed convection heat transfer and fluid flow problem. Finally the simulation results have been compared with the previous numerical and experimental results and it is found to be in good agreement.
Resumo:
Detecting anomalies in the online social network is a significant task as it assists in revealing the useful and interesting information about the user behavior on the network. This paper proposes a rule-based hybrid method using graph theory, Fuzzy clustering and Fuzzy rules for modeling user relationships inherent in online-social-network and for identifying anomalies. Fuzzy C-Means clustering is used to cluster the data and Fuzzy inference engine is used to generate rules based on the cluster behavior. The proposed method is able to achieve improved accuracy for identifying anomalies in comparison to existing methods.
Resumo:
This research is a step forward in improving the accuracy of detecting anomaly in a data graph representing connectivity between people in an online social network. The proposed hybrid methods are based on fuzzy machine learning techniques utilising different types of structural input features. The methods are presented within a multi-layered framework which provides the full requirements needed for finding anomalies in data graphs generated from online social networks, including data modelling and analysis, labelling, and evaluation.
Resumo:
A numerical study is carried out to investigate the transition from laminar to chaos in mixed convection heat transfer inside a lid-driven trapezoidal enclosure. In this study, the top wall is considered as isothermal cold surface, which is moving in its own plane at a constant speed, and a constant high temperature is provided at the bottom surface. The enclosure is assumed to be filled with water-Al2O3 nanofluid. The governing Navier–Stokes and thermal energy equations are expressed in non-dimensional forms and are solved using Galerkin finite element method. Attention is paid in the present study on the pure mixed convection regime at Richandson number, Ri = 1. The numerical simulations are carried out over a wide range of Reynolds (0.1 ≤ Re ≤ 103) and Grashof (0.01 ≤ Gr ≤ 106) numbers. Effects of the presence of nanofluid on the characteristics of mixed convection heat transfer are also explored. The average Nusselt numbers of the heated wall are computed to demonstrate the influence of flow parameter variations on heat transfer. The corresponding change of flow and thermal fields is visualized from the streamline and the isotherm contour plots.
Resumo:
Reflective writing is an important learning task to help foster reflective practice, but even when assessed it is rarely analysed or critically reviewed due to its subjective and affective nature. We propose a process for capturing subjective and affective analytics based on the identification and recontextualisation of anomalous features within reflective text. We evaluate 2 human supervised trials of the process, and so demonstrate the potential for an automated Anomaly Recontextualisation process for Learning Analytics.