903 resultados para left ventricular mass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined factors contributing to the differences in left ventricular mass as measured by Doppler echocardiography in children. Fourteen boys (10.3 ± 0.3 years of age) and 1 1 girls (10.5 ± 0.4 years of age) participated in the study. Height and weight were measured, and relative body fat was determined from the measurement of skinfold thickness according to Slaughter et al. (1988). Lean Body Mass was then calculated by subtracting the fat mass from the total body mass. Sexual maturation was self-assessed using the stages of sexual maturation by Tanner (1962). Both pubic hair development and genital (penis or breast for boys and girls respectively) development were used to determine sexual maturation. Carotid Pulse pressure was assessed by applanation tomometry in the left carotid artery. Cardiac mass was measured by Doppler Echocardiography. Images of cardiac structures were taken using B-Mode and were then translated to M- Mode. The dimensions at the end diastole were obtained at the onset of the QRS complex of the electrocardiogram in a plane through a standard position. Measurements included: (a) the diameter of the left ventricle at the end diastole was measured from the septum edge to the endocardium mean border, (b) the posterior wall was measured as the distance from to anterior wall to the epicardium surface, and (c) the interventricular septum was quantified as the distance from the surface of the left ventricle border to the right ventricle septum surface. Systolic time measurements were taken at the peak of the T-wave of the electrocardiogram. Each measurement was taken three to five times before averaging. Average values were used to calculate cardiac mass using the following equation (Deveraux et al. 1986). Weekly physical activity metabolic equivalent was calculated using a standardize activity questionnaire (Godin and Shepard, 1985) and peakV02 was measured on a cycloergometer. There were no significant differences in cardiovascular mesurements between boys and girls. Left ventricular mass was correlated (p<0.05) with size, maturation, peakV02 and physical activity metabolic equivalent. In boys, lean body mass alone explained 36% of the variance in left ventricular mass while weight was the single strongest predictor of left ventricular mass (R =0.80) in girls. Lean body mass, genital developemnt and physical activity metabolic equivalent together explained 46% and 81% in boys and girls, respectively. However, the combination of lean body mass, genital development and peakV02 (ml kgLBM^ min"') explained up to 84% of the variance in left ventricular mass in girls, but added nothing in boys. It is concluded that left ventricular mass was not statistically different between pre-adolescent boys and girls suggesting that hormonal, and therefore, body size changes in adolescence have a main effect on cardiac development and its final outcome. Although body size parameters were the strongest correlates of left ventricular mass in this pre-adolescent group of children, to our knowledge, this is the first study to report that sexual maturation, as well as physical activity and fitness, are also strong associated with left ventricular mass in pre-adolescents, especially young females. Arterial variables, such as systolic blood pressure and carotid pulse pressure, are not strong determinants of left ventricular mass in this pre-adolescent group. In general, these data suggest that although there is no gender differences in the absolute values of left ventricular mass, as children grow, the factors that determine cardiac mass differ between the genders, even in the same pre-adolescent age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The left ventricular mass (LVM) measurement is of major importance for renal patients, as ventricular hypertrophy is an important prognostic index. The echo-cardiogram of the ventricular mass is larger before than it is after hemodialysis, which can confuse data interpretation. The aim of this work is to study the influence of alterations in fluid volume on the variations in measurements of ventricular mass observed during the course of a hemodialysis. Sixteen patients with chronic renal insufficiency in hemodialysis were evaluated at the Dialysis Unit of the University Hospital-UNESP, Botucatu, São Paulo State. The left ventricular mass was calculated from echocardiograms taken before and after hemodialysis and simultaneous ultra-filtration (12 patients: UF GROUP) and before and after hemodialysis isovolemic phase with sequential ultra-filtration (10 patients: ISO GROUP). Six of these patients were submitted to measurements of left ventricular mass before and after hemodialysis in both isovolemic and simultaneous ultra-filtration procedures. In the UF group, there was significant reduction in the following parameters before and after dialysis: diastolic diameter from 54.0 +/- 6.0 mm to 45.6 +/- 7.6 mm; left ventricular mass from 342 +/- 114 g to 265 +/- 117 g; and its respective index (IMVE) from 214 +/- 68 g/m(2) to 168 +/- 71 g/m(2). The ISO group showed no statistically significant variation. The behavior of the variables of six patients submitted to both observations confirm these results. In conclusion, the variations in echocardiogram measurements of the left ventricular mass relating to hemodialysis appear to be induced by alterations of the volemic condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of changes in left ventricular (LV) shape and dimensions due to acute arterial hypertension induced by mechanical obstruction of the aorta for 10 min on LV mass values estimated by M-mode echocardiogram was studied in 14 anesthetized dogs. Although the systolic pressure increased from 117.5 +/- 19.9 to 175.4 +/- 22.9 mmHg altered ventricular diameter from 2.77 +/- 0.49 cm to 3.17 +/- 0.67 cm (P<0.05) and wall thickness from 0.83 +/- 0.09 to 0.75 +/- 0.09 cm (P<0.05), LV mass estimated before (73.5 +/- 19.1 g) and after (78.3 +/- 26.4 g) hypertension was not significantly different. We demonstrate here for the first time that changes in LV dimensions induced by acute arterial hypertension do not modify LV mass values estimated by the M-mode electrocardiogram method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increase in left ventricular mass (LVM) occurs in the presence of type 2 diabetes, apparently independent of hypertension (1), but the determinants of this process are unknown. Brachial blood pressure is not representative of that at the ascending aorta (2) because the pressure wave is amplified from central to peripheral arteries. Central blood pressure is probably more clinically important since local pulsatile pressure determines adverse arterial and myocardial remodeling (3,4). Thus, an inaccurate assessment of the contribution of arterial blood pressure to LVM may occur if only brachial blood pressure is taken into consideration. In this study we sought the contribution of central blood pressure (and other interactive factors known to affect wave reflection, e.g., glycemic control and total arterial compliance) to LVM in patients with type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developmental coordination disorder (p-DCD) is a neuro-developmental disorder featuring impairment in developing motor coordination. This study examined left ventricular mass (LVM) in children with p-DCD (n=63) and controls (n=63). LVM was measured using echocardiography. Body composition was determined using BOD POD and peak oxygen uptake (peak V02) was measured by a progressive exercise test. Height, weight and blood pressure were also measured. LVM was not significantly elevated in p-DCD compared to controls. Peak V02 was lower and SBP, BMI, HR, and BF(%) were significantly higher in p-DCD. They also demonstrated elevated stroke volume (SV), cardiac output (CO), end-diastolic volume, and ventricular diameter in diastole. In regression analyses, p-DCD was a significant predictor of SV and CO after accounting for height, FFM, V02FFM, and sex. These differences in children with p-DCD indicate obesity related changes in the left ventricle and may represent early stages of developing hypertrophy of the left ventricle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The severity of aortic regurgitation can be estimated using pressure half time (PHT) of the aortic regurgitation flow velocity, but the correlation between regurgitant fraction and PHT is weak. AIM To test the hypothesis that the association between PHT and regurgitant fraction is substantially influenced by left ventricular relaxation. METHODS In 63 patients with aortic regurgitation, subdivided into a group without (n = 22) and a group with (n = 41) left ventricular hypertrophy, regurgitant fraction was calculated using the difference between right and left ventricular cardiac outputs. Left ventricular relaxation was assessed using the early to late diastolic Doppler tissue velocity ratio of the mitral annulus (E/ADTI), the E/A ratio of mitral inflow (E/AM), and the E deceleration time (E-DT). Left ventricular hypertrophy was assessed using the M mode derived left ventricular mass index. RESULTS The overall correlation between regurgitant fraction and PHT was weak (r = 0.36, p < 0.005). In patients without left ventricular hypertrophy, there was a significant correlation between regurgitant fraction and PHT (r = 0.62, p < 0.005), but not in patients with left ventricular hypertrophy. In patients with a left ventricular relaxation abnormality (defined as E/ADTI< 1, E/AM< age corrected lower limit, E-DT >/= 220 ms), no associations between regurgitant fraction and PHT were found, whereas in patients without left ventricular relaxation abnormalities, the regurgitant fraction to PHT relations were significant (normal E/AM: r = 0.57, p = 0.02; E-DT< 220 ms: r = 0.50, p < 0.001; E/ADTI < 1: r = 0.57, p = 0.02). CONCLUSIONS Only normal left ventricular relaxation allows a significant decay of PHT with increasing aortic regurgitation severity. In abnormal relaxation, which is usually present in left ventricular hypertrophy, wide variation in prolonged backward left ventricular filling may cause dissociation between the regurgitant fraction and PHT. Thus the PHT method should only be used in the absence of left ventricular relaxation abnormalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Obesity is a systemic disorder associated with an increase in left ventricular mass and premature death and disability from cardiovascular disease. Although bariatric surgery reverses many of the hormonal and hemodynamic derangements, the long-term collective effects on body composition and left ventricular mass have not been considered before. We hypothesized that the decrease in fat mass and lean mass after weight loss surgery is associated with a decrease in left ventricular mass. METHODS: Fifteen severely obese women (mean body mass index [BMI]: 46.7+/-1.7 kg/m(2)) with medically controlled hypertension underwent bariatric surgery. Left ventricular mass and plasma markers of systemic metabolism, together with body mass index (BMI), waist and hip circumferences, body composition (fat mass and lean mass), and resting energy expenditure were measured at 0, 3, 9, 12, and 24 months. RESULTS: Left ventricular mass continued to decrease linearly over the entire period of observation, while rates of weight loss, loss of lean mass, loss of fat mass, and resting energy expenditure all plateaued at 9 [corrected] months (P <.001 for all). Parameters of systemic metabolism normalized by 9 months, and showed no further change at 24 months after surgery. CONCLUSIONS: Even though parameters of obesity, including BMI and body composition, plateau, the benefits of bariatric surgery on systemic metabolism and left ventricular mass are sustained. We propose that the progressive decrease of left ventricular mass after weight loss surgery is regulated by neurohumoral factors, and may contribute to improved long-term survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Left ventricular mass (LVM) is a strong predictor of cardiovascular disease (CVD) in adults. However, normal growth of LVM in healthy children is not well understood, and previous results on independent effects of body size and body fatness on LVM have been inconsistent. The purpose of this study was (1) to establish the normal growth curve of LVM from age 8 to age 18, and evaluate the determinants of change in LVM with age, and (2) to assess the independent effects of body size and body fatness on LVM.^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. A synthetic cohort with continuous observations from age 8 to 18 years was constructed. A total of 4608 LVM measurements was made from M-mode echocardiography. The multilevel linear model was used for analysis.^ Sex-specific trajectories of normal growth of LVM from age 8 to 18 was displayed. On average, LVM was 15 g higher in males than females. Average LVM increased linearly in males from 78 g at age 8 to 145 g at age 18. For females, the trajectory was curvilinear, nearly constant after age 14. No significant racial differences were found. After adjustment for the effects of body size and body fatness, average LVM decreased slightly from age 8 to 18, and sex differences in changes of LVM remained constant.^ The impact of body size on LVM was examined by adding to a basic LVM-sex-age model one of 9 body size indicators. The impact of body fatness was tested by further introducing into each of the 9 LVM models (with one or another of the body size indicators) one of 4 body fatness indicators, yielding 36 models with different body size and body fatness combinations. The results indicated that effects of body size on LVM can be distinguished between fat-free body mass and fat body mass, both being independent, positive predictors. The former is the stronger determinant. When a non-fat-free body size indicator is used as predictor, the estimated residual effect of body fatness on LVM becomes negative. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension in adults is defined by risk for cardiovascular morbidity and mortality, but in children, hypertension is defined using population norms. The diagnosis of hypertension in children and adolescents requires only casual blood pressure measurements, but the use of ambulatory blood pressure monitoring to further evaluate patients with elevated blood pressure has been recommended in the Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents. The aim of this study is to assess the association between stage of hypertension (using both casual and 24 hour ambulatory blood pressure measurements) and target organ damage defined by left ventricular hypertrophy (LVH) in a sample of children and adolescents in Houston, TX. A retrospective analysis was performed on the primary de-identified data from the combination of participants in two, IRB approved, cross-sectional studies. The studies collected basic demographic data, height, weight, casual blood pressures, ambulatory blood pressures, and left ventricular measurements by echocardiography on children age 8 to 18 years old. Hypertension was defined and staged using the criteria for ambulatory blood pressure reported by Lurbe et al. [1] with some modification. Left ventricular hypertrophy was defined using left ventricular mass index (LVMI) criteria specific for children and adults. The pediatric criterion was LVMI2.7 > 95th percentile for gender and the adult criterion was LVMI2.7 > 51g/m2.7. Participants from the original studies were included in this analysis if they had complete demographic information, anthropometric measures, casual blood pressures, ambulatory blood pressures, and echocardiography data. There were 241 children and adolescents included: 19.1% were normotensive, 17.0% had white coat hypertension, 11.6% had masked hypertension, and 52.4% had confirmed hypertension. Of those with hypertension, 22.4% had stage 1 hypertension, 5.8% had stage 2 hypertension, and 24.1% had stage 3 hypertension. Participants with confirmed hypertension were more likely to have LVH by pediatric criterion than those who were normotensive [OR 2.19, 95% CI (1.04–4.63)]; LVH defined by adult criterion did not differ significantly in normotensives compared with hypertensives [OR 2.08, 95% CI (0.58–7.52)]. However, there was a significant trend in the increased prevalence of LVH across the six blood pressure categories for LVH defined by both pediatric and adult criteria (p < 0.001 and p = 0.02, respectively). Additionally, the mean LVM indexed by height 2.7 had a significantly increased trend across blood pressure stages from normal to stage 3 hypertension (p < 0.02). Pediatric hypertension is defined using population norms, and although children with mild hypertension are not at increased odds of having target organ damage defined by LVH, those with severe hypertension are more likely to have LVH. Staging hypertension by ambulatory blood pressure further describes an individual's risk for LVH target organ damage. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES We sought to determine whether assessment of left ventricular (LV) function with real-time (RT) three-dimensional echocardiography (3DE) could reduce the variation of sequential LV measurements and provide greater accuracy than two-dimensional echocardiography (2DE). BACKGROUND Real-time 3DE has become feasible as a standard clinical tool, but its accuracy for LV assessment has not been validated. METHODS Unselected patients (n = 50; 41 men; age, 64 +/- 8 years) presenting for evaluation of LV function were studied with 2DE and RT-3DE. Test-retest variation was performed by a complete restudy by a separate sonographer within 1 h without alteration of hemodynamics or therapy. Magnetic resonance imaging (MRI) images were obtained during a breath-hold, and measurements were made off-line. RESULTS The test-retest variation showed similar measurements for volumes but wider scatter of LV mass measurements with M-mode and 2DE than 3DE. The average MRI end-diastolic volume was 172 +/- 53 ml; LV volumes were underestimated by 2DE (mean difference, -54 +/- 33; p < 0.01) but only slightly by RT-3DE (-4 +/- 29; p = 0.31). Similarly, end-systolic volume by MRI (91 +/- 53 ml) was underestimated by 2DE (mean difference, -28 +/- 28; p < 0.01) and by RT-3DE (mean difference, -3 +/- 18; p = 0.23). Ejection fraction by MRI was similar by 2DE (p = 0.76) and RT-3DE (p = 0.74). Left ventricular mass (183 +/- 50 g) was overestimated by M-mode (mean difference, 68 +/- 86 g; p < 0.01) and 2DE (16 +/- 57; p = 0.04) but not RT-3DE (0 +/- 38 g; p = 0.94). There was good inter- and intra-observer correlation between RT-3DE by two sonographers for volumes, ejection fraction, and mass. CONCLUSIONS Real-time 3DE is a feasible approach to reduce test-retest variation of LV volume, ejection fraction, and mass measurements in follow-up LV assessment in daily practice. (C) 2004 by the American College of Cardiology Foundation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08