499 resultados para leatherback turtles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leatherback turtles (Dermochelys coriacea) are regularly seen off the U.S. West Coast, where they forage on jellyfish (Scyphomedusae) during summer and fall. Aerial line-transect surveys were conducted in neritic waters (<92 m depth) off central and northern California during 1990−2003, providing the first foraging population estimates for Pacific leatherback turtles. Males and females of about 1.1 to 2.1 m length were observed. Estimated abundance was linked to the Northern Oscillation Index and ranged from 12 (coefficient of variation [CV] =0.75) in 1995 to 379 (CV= 0.23) in 1990, averaging 178 (CV= 0.15). Greatest densities were found off central California, where oceanographic retention areas or upwelling shadows created favorable habitat for leatherback turtle prey. Results from independent telemetry studies have linked leatherback turtles off the U.S. West Coast to one of the two largest remaining Pacific breeding populations, at Jamursba Medi, Indonesia. Nearshore waters off California thus represent an important foraging region for the critically endangered Pacific leatherback turtle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying key marine megavertebrate habitats has become ever more important as concern increases regarding global fisheries bycatch and accelerated climate change. This will be aided by a greater understanding of the patterns and processes determining the spatiotemporal distribution of species of conservation concern. We identify probable foraging grounds for leatherback turtles in the NE Atlantic using monthly landscapes of gelatinous organism distribution constructed from Continuous Plankton Recorder Survey data. Using sightings data (n = 2013 records, 1954 to 2003) from 9 countries (UK, Ireland, France, Belgium, The Netherlands, Denmark, Germany, Norway and Sweden), we show sea surface temperatures of approximately 10 to 12 degree C most likely indicate the lower thermal threshold for accessible habitats during seasonal foraging migrations to high latitudes. Integrating maps of gelatinous plankton as a possible indicator of prey distribution with thermal tolerance parameters demonstrates the dynamic (spatial and temporal) nature of NE Atlantic foraging habitats. We highlight the importance of body size- related thermal constraints in structuring leatherback foraging populations and demonstrate a latitudinal gradient in body size (Bergmann's rule) where smaller animals are excluded from higher latitude foraging areas. We highlight the marine area of the European continental shelf edge as being both thermally accessible and prey rich, and therefore potentially supporting appreciable densities of foraging leatherbacks, with some suitable areas not yet extensively surveyed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over recent years there have been substantial efforts to record and interpret the post-nesting movements of leatherback turtles (Dermochelys coriacea) breeding in tropical regions. Less well documented are the movements undertaken by individual turtles during the breeding season itself, or more specifically between sequential nesting events. Such movements are of interest for two reasons: (1) gravid female leatherbacks may range extensively into the territorial waters and nesting beaches of neighbouring countries, raising questions for conservationists and population ecologists; and (2) the magnitude of movements themselves help elucidate underlying reproductive strategies (e.g. whether to rest near to the nesting or forage extensively). Here, satellite relay data loggers are used (SRDLs) to detail the movements and behaviour of two female leatherback turtles throughout three consecutive inter-nesting intervals in the Commonwealth of Dominica, West Indies. Both near-shore residence and extensive inter-nesting movements were recorded, contrasting previous studies, with movements away from the nesting beach increasing towards the end of the nesting season. Using this behavioural study as a backdrop, the suitability of attaching satellite transmitters directly to the carapace was additionally explored as an alternative approach to conventional harness deployments. Specifically, the principal aims were to (1) gather empirical data on speed of travel and (2) assess dive performance (aerobic dive limit) to enable comparisons with turtles previously fitted with harnesses elsewhere in the Caribbean (n = 6 turtles; Grenada, WI). This produced mixed results with animals bearing directly attached transmitters travelling significantly faster (55.21 km day(-1): SD 6.68) than harnessed individuals (39.80 km day(-1); SD 6.19); whilst no discernable difference in dive performance could be found between the two groups of study animals. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrequent and exceptional behaviours can provide insight into the ecology and physiology of a particular species. Here we examined extraordinarily deep (300-1250 m) and protracted (>1h) dives made by critically endangered leatherback turtles (Dermochelys coriacea) in the context of three previously suggested hypotheses: predator evasion, thermoregulation and exploration for gelatinous prey. Data were obtained via satellite relay data loggers attached to adult turtles at nesting beaches (N=11) and temperate foraging grounds (N=2), constituting a combined tracking period of 9.6 years (N=26,146 dives) and spanning the entire North Atlantic Ocean. Of the dives, 99.6% (N=26,051) were to depths <300 m with only 0.4% (N=95) extending to greater depths (subsequently termed 'deep dives'). Analysis suggested that deep dives: (1) were normally distributed around midday; (2) may exceed the inferred aerobic dive limit for the species; (3) displayed slow vertical descent rates and protracted durations; (4) were much deeper than the thermocline; and (5) occurred predominantly during transit, yet ceased once seasonal residence on foraging grounds began. These findings support the hypothesis that deep dives are periodically employed to survey the water column for diurnally descending gelatinous prey. If a suitable patch is encountered then the turtle may cease transit and remain within that area, waiting for prey to approach the surface at night. If unsuccessful, then migration may continue until a more suitable site is encountered. Additional studies using a meta-analytical approach are nonetheless recommended to further resolve this matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used Satellite Relay Data Loggers to obtain the first dive profiles for critically endangered leatherback turtles outside the nesting season. As individuals moved from the Caribbean out into the Atlantic, key aspects of their diving behaviour changed markedly, in line with theoretical predictions for how dive duration should vary with foraging success. In particular, in the Atlantic, where foraging success is expected to be higher, dives became much longer than in the Caribbean. The deepest-ever dive profile recorded for a reptile was obtained in the oceanic Atlantic, with a 54-min dive to 626 m on 26 August 2002. However, dives were typically much shallower (generally

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The North Atlantic is considered a stronghold for the critically endangered leatherback sea turtle. However, limited information exists regarding the movements of individuals to and from the seas off Europe's northwesterly fringe, an area where featherbacks have been historically sighted for the past 200 yr. Here, we used satellite telemetry to record the movements and behaviour of 2 individuals bycaught in fisheries off the southwest coast of Ireland. The turtle T1 (tagged 1 September 2005; female; tracked 375 d) immediately travelled south via Madeira and the Canaries, before residing in West African waters for 3 mo. In spring, T1 migrated north towards Newfoundland where transmissions ceased. T2 (29 June 2006; male; 233 d) travelled south for a short period before spending 66 d west of the Bay of Biscay, an area previously asserted as a high-use area for leatherbacks. This prolonged high latitude summer residence corresponded with a mesoscale feature evident from satellite imagery, with the implication that this turtle had found a rich feeding site. A marked change in dive behaviour was apparent as the turtle exited this feature and provided useful insights on leatherback diving behaviour. T2 headed south in October 2006, and performed the deepest-ever dive recorded by a reptile (1280 m) southwest of Cape Verde. Unlike T1, T2 swam southwest towards Brazil before approaching the major nesting beaches of French Guiana and Surinam. Importantly, these tracks document the movement of leatherbacks from one of the remotest foraging grounds in the North Atlantic. © Inter-Research 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The North Atlantic is considered a stronghold for the critically endangered leatherback sea turtle. However, limited information exists regarding the movements of individuals to and from the seas off Europe’s northwesterly fringe, an area where leatherbacks have been historically sighted for the past 200 yr. Here, we used satellite telemetry to record the movements and behaviour of 2 individuals bycaught in fisheries off the southwest coast of Ireland. The turtle T1 (tagged 1 September 2005; female; tracked 375 d) immediately travelled south via Madeira and the Canaries, before residing in West African waters for 3 mo. In spring, T1 migrated north towards Newfoundland where transmissions ceased. T2 (29 June 2006; male; 233 d) travelled south for a short period before spending 66 d west of the Bay of Biscay, an area previously asserted as a high-use area for leatherbacks. This prolonged high latitude summer residence corresponded with a mesoscale feature evident from satellite imagery, with the implication that this turtle had found a rich feeding site. A marked change in dive behaviour was apparent as the turtle exited this feature and provided useful insights on leatherback diving behaviour. T2 headed south in October 2006, and performed the deepest-ever dive recorded by a reptile (1280 m) southwest of Cape Verde. Unlike T1, T2 swam southwest towards Brazil before approaching the major nesting beaches of French Guiana and Surinam. Importantly, these tracks document the movement of leatherbacks from one of the remotest foraging grounds in the North Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrequent and exceptional behaviours can provide insight into the ecology and physiology of a particular species. Here we examined extraordinarily deep (300–1250 m) and protracted (>1h) dives made by critically endangered leatherback turtles (Dermochelys coriacea) in the context of three previously suggested hypotheses: predator evasion, thermoregulation and exploration for gelatinous prey. Data were obtained via satellite relay data loggers attached to adult turtles at nesting beaches (N=11) and temperate foraging grounds (N=2), constituting a combined tracking period of 9.6 years (N=26,146 dives) and spanning the entire North Atlantic Ocean. Of the dives, 99.6% (N=26,051) were to depths <300 m with only 0.4% (N=95) extending to greater depths (subsequently termed `deep dives'). Analysis suggested that deep dives: (1) were normally distributed around midday; (2) may exceed the inferred aerobic dive limit for the species; (3) displayed slow vertical descent rates and protracted durations; (4) were much deeper than the thermocline; and (5) occurred predominantly during transit, yet ceased once seasonal residence on foraging grounds began. These findings support the hypothesis that deep dives are periodically employed to survey the water column for diurnally descending gelatinous prey. If a suitable patch is encountered then the turtle may cease transit and remain within that area, waiting for prey to approach the surface at night. If unsuccessful, then migration may continue until a more suitable site is encountered. Additional studies using a meta-analytical approach are nonetheless recommended to further resolve this matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Good estimates of metabolic rate in free‐ranging animals are essential for understanding behavior, distribution, and abundance. For the critically endangered leatherback turtle (Dermochelys coriacea), one of the world’s largest reptiles, there has been a long‐standing debate over whether this species demonstrates any metabolic endothermy. In short, do leatherbacks have a purely ectothermic reptilian metabolic rate or one that is elevated as a result of regional endothermy? Recent measurements have provided the first estimates of field metabolic rate (FMR) in leatherback turtles using doubly labeled water; however, the technique is prohibitively expensive and logistically difficult and produces estimates that are highly variable across individuals in this species. We therefore examined dive duration and depth data collected for nine free‐swimming leatherback turtles over long periods (up to 431 d) to infer aerobic dive limits (ADLs) based on the asymptotic increase in maximum dive duration with depth. From this index of ADL and the known mass‐specific oxygen storage capacity (To2) of leatherbacks, we inferred diving metabolic rate (DMR) as . We predicted that if leatherbacks conform to the purely ectothermic reptilian model of oxygen consumption, these inferred estimates of DMR should fall between predicted and measured values of reptilian resting and field metabolic rates, as well as being substantially lower than the FMR predicted for an endotherm of equivalent mass. Indeed, our behaviorally derived DMR estimates ( mL O2 min−1 kg−1) were times the resting metabolic rate measured in unrestrained leatherbacks and times the average FMR for a reptile of equivalent mass. These DMRs were also nearly one order of magnitude lower than the FMR predicted for an endotherm of equivalent mass. Thus, our findings lend support to the notion that diving leatherback turtles are indeed ectothermic and do not demonstrate elevated metabolic rates that might be expected due to regional endothermy. Their capacity to have a warm body core even in cold water therefore seems to derive from their large size, heat exchangers, thermal inertia, and insulating fat layers and not from an elevated metabolic rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite decades of conservation efforts on the nesting beaches, the critical status of leatherback turtles shows that their survival predominantly depends on our ability to reduce at-sea mortality. Although areas where leatherbacks meet fisheries have been identified during the long distance movements between 2 consecutive nesting seasons, hot-spots of lethal interactions are still poorly defined within the nesting season, when individuals concentrate close to land. Here we report movements of satellite-tracked gravid leatherback turtles during the nesting season in Western Central Africa, South America and the Caribbean Sea, which account for about 70% of the world population. We show that during and at the end of the nesting season, leatherback turtles have the propensity to remain over the continental shelf, yet sometimes perform extended movements and may even nest in neighbouring countries. Leatherbacks exploit coastal commercial fishing grounds and face substantial accidental capture by regional coastal fisheries (e.g. at least 10% in French Guiana). This emphasises the need for regional conservation strategies to be developed at the ocean scale—both at sea and on land—to ensure the survival of the last leatherback turtles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animals which undertake migrations from foraging grounds to suitable breeding areas must adopt strategies in these new conditions in order to minimise the rate at which body condition deteriorates (which will occur due to oogenesis or provisioning for young). For some animals this involves continuing foraging, whereas for others the optimal strategy is to fast during the breeding season. The leatherback turtle undertakes long-distance migrations from temperate zones to tropical breeding areas, and in some of these areas it has been shown to exhibit diving behaviour indicative of foraging. We used conventional time–depth recorders and a single novel mouth-opening sensor to investigate the foraging behaviour of leatherback turtles in the southern Caribbean. Diving behaviour suggested attempted foraging on vertically migrating prey with significantly more diving to a more consistent depth occurring during the night. No obvious prey manipulation was detected by the mouth sensor, but rhythmic mouth opening did occur during specific phases of dives, suggesting that the turtle was relying on gustatory cues to sense its immediate environment. Patterns of diving in conjunction with these mouth-opening activities imply that leatherbacks are attempting to forage during the breeding season and that gustatory cues are important to leatherbacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some marine species have been shown to target foraging at particular hotspots of high prey abundance. However, we show here that in the year after a nesting season, female leatherback turtles (Dermochelys coriacea) in the Atlantic generally spend relatively little time in fixed hotspots, especially those with a surface signature revealed in satellite imagery, but rather tend to have a pattern of near continuous traveling. Associated with this traveling, distinct changes in dive behavior indicate that turtles constantly fine tune their foraging behavior and diel activity patterns in association with local conditions. Switches between nocturnal vs. diurnal activity are rare in the animal kingdom but may be essential for survival on a diet of gelatinous zooplankton where patches of high prey availability are rare. These results indicate that in their first year after nesting, leatherback turtles do not fit the general model of migration where responses to resources are suppressed during transit. However, their behavior may be different in their sabbatical years away from nesting beaches. Our results highlight the importance of whole-ocean fishing gear regulations to minimize turtle bycatch.