889 resultados para least trimmed squares
Resumo:
Constructing a 3D surface model from sparse-point data is a nontrivial task. Here, we report an accurate and robust approach for reconstructing a surface model of the proximal femur from sparse-point data and a dense-point distribution model (DPDM). The problem is formulated as a three-stage optimal estimation process. The first stage, affine registration, is to iteratively estimate a scale and a rigid transformation between the mean surface model of the DPDM and the sparse input points. The estimation results of the first stage are used to establish point correspondences for the second stage, statistical instantiation, which stably instantiates a surface model from the DPDM using a statistical approach. This surface model is then fed to the third stage, kernel-based deformation, which further refines the surface model. Handling outliers is achieved by consistently employing the least trimmed squares (LTS) approach with a roughly estimated outlier rate in all three stages. If an optimal value of the outlier rate is preferred, we propose a hypothesis testing procedure to automatically estimate it. We present here our validations using four experiments, which include 1 leave-one-out experiment, 2 experiment on evaluating the present approach for handling pathology, 3 experiment on evaluating the present approach for handling outliers, and 4 experiment on reconstructing surface models of seven dry cadaver femurs using clinically relevant data without noise and with noise added. Our validation results demonstrate the robust performance of the present approach in handling outliers, pathology, and noise. An average 95-percentile error of 1.7-2.3 mm was found when the present approach was used to reconstruct surface models of the cadaver femurs from sparse-point data with noise added.
Resumo:
robreg provides a number of robust estimators for linear regression models. Among them are the high breakdown-point and high efficiency MM-estimator, the Huber and bisquare M-estimator, and the S-estimator, each supporting classic or robust standard errors. Furthermore, basic versions of the LMS/LQS (least median of squares) and LTS (least trimmed squares) estimators are provided. Note that the moremata package, also available from SSC, is required.
Resumo:
The article presents a generalized analytical expression for description of the integral excess Gibbs free energy of mixing of a ternary system. Twelve constants of the equation are assessed by the least mean squares regressional analysis of the experimental integral excess data of the constituent binaries; three ternary parameters are evaluated by a regressional analysis based on the partial experimental data of a component of the ternary system. The assessed values of the ternary parameters describe the nature of the ternary interaction in the system. Activities and isoactivities of the components in the Ag-Au-Cu system at 1350 K are calculated and found to be in good agreement with the experimental data. This analytical treatment is particularly useful to ternary systems where the thermodynamic data are available from different sources.
Resumo:
The thermodynamic properties of liquid unsaturated Co--O solutions have been determined by electrochemical measurements using (Y sub 2 O sub 3 )ThO sub 2 as solid electrolyte. The cell can be represented as, Pt. MoO sub 2 + Mo | (Y sub 2 O sub 3 )ThO sub 2 | O sub Co , tungsten, Pt, Emf of the cell was measured as a function of oxygen concentration in liquid Co at 1798, 1873 and 1973K. Least-mean squares regression analysis of the experimental data gives for the free energy of solution of diatomic oxygen in liquid Co Delta G exp 0 sub O(Co) = --84935--7.61 T ( plus/minus 400) J/g-atom and self interaction parameter for oxygen epsilon exp O sub O = --97240/T + 40.52 ( plus/minus 1) where the standard state for O is an infinitely dilute solution in which the activity is equal to atomic percent. The present data are discussed in comparison with those reported in the literature and the phase diagram for the Co--O system. 18 ref.--AA.
Resumo:
A variation of the least means squares (LMS) algorithm, called the delayed LMS (DLMS) algorithm is an ideally suited to achieve highly pipelined, adaptive digital filter implementations. The paper presents an efficient method of determining the delays in the DLMS filter and then transferring these delays using retiming in order to achieve fully pipelined circuit architectures for FPGA implementation. The method has been used to derive a series of retimed delayed LMS (RDLMS) architectures, which considerable reduce the number of delays and convergence time and give superior performance in terms of throughput rate when compared to previous work. Three circuit architectures and three hardware shared versions are presented which have been implemented using the Virtex-II FPGA technology resulting in a throughout rate of 182 Msample/s.
Resumo:
In this article, we extend the earlier work of Freeland and McCabe [Journal of time Series Analysis (2004) Vol. 25, pp. 701–722] and develop a general framework for maximum likelihood (ML) analysis of higher-order integer-valued autoregressive processes. Our exposition includes the case where the innovation sequence has a Poisson distribution and the thinning is binomial. A recursive representation of the transition probability of the model is proposed. Based on this transition probability, we derive expressions for the score function and the Fisher information matrix, which form the basis for ML estimation and inference. Similar to the results in Freeland and McCabe (2004), we show that the score function and the Fisher information matrix can be neatly represented as conditional expectations. Using the INAR(2) speci?cation with binomial thinning and Poisson innovations, we examine both the asymptotic e?ciency and ?nite sample properties of the ML estimator in relation to the widely used conditional least
squares (CLS) and Yule–Walker (YW) estimators. We conclude that, if the Poisson assumption can be justi?ed, there are substantial gains to be had from using ML especially when the thinning parameters are large.
Resumo:
Searching for the optimum tap-length that best balances the complexity and steady-state performance of an adaptive filter has attracted attention recently. Among existing algorithms that can be found in the literature, two of which, namely the segmented filter (SF) and gradient descent (GD) algorithms, are of particular interest as they can search for the optimum tap-length quickly. In this paper, at first, we carefully compare the SF and GD algorithms and show that the two algorithms are equivalent in performance under some constraints, but each has advantages/disadvantages relative to the other. Then, we propose an improved variable tap-length algorithm using the concept of the pseudo fractional tap-length (FT). Updating the tap-length with instantaneous errors in a style similar to that used in the stochastic gradient [or least mean squares (LMS)] algorithm, the proposed FT algorithm not only retains the advantages from both the SF and the GD algorithms but also has significantly less complexity than existing algorithms. Both performance analysis and numerical simulations are given to verify the new proposed algorithm.
Resumo:
This work presents a modelling and identification method for a wheeled mobile robot, including the actuator dynamics. Instead of the classic modelling approach, where the robot position coordinates (x,y) are utilized as state variables (resulting in a non linear model), the proposed discrete model is based on the travelled distance increment Delta_l. Thus, the resulting model is linear and time invariant and it can be identified through classical methods such as Recursive Least Mean Squares. This approach has a problem: Delta_l can not be directly measured. In this paper, this problem is solved using an estimate of Delta_l based on a second order polynomial approximation. Experimental data were colected and the proposed method was used to identify the model of a real robot
Resumo:
Proposed is a symbol-based decision-directed algorithm for blind equalisation of quadrature amplitude modulation (QAM) signals using a decision feedback scheme. Independently of QAM order, it presents: (i) an error equal to zero when the equaliser output coincides with the transmitted signal; (ii) simultaneous recovery of the modulus and phase of the signal; (iii) a misadjustment close to that of the normalised least-mean squares algorithm; (iv) fast convergence; and (v) the avoidance of degenerative solutions. Additionally, its stability is ensured when the step-size is properly chosen.
Resumo:
It is well known that constant-modulus-based algorithms present a large mean-square error for high-order quadrature amplitude modulation (QAM) signals, which may damage the switching to decision-directed-based algorithms. In this paper, we introduce a regional multimodulus algorithm for blind equalization of QAM signals that performs similar to the supervised normalized least-mean-squares (NLMS) algorithm, independently of the QAM order. We find a theoretical relation between the coefficient vector of the proposed algorithm and the Wiener solution and also provide theoretical models for the steady-state excess mean-square error in a nonstationary environment. The proposed algorithm in conjunction with strategies to speed up its convergence and to avoid divergence can bypass the switching mechanism between the blind mode and the decision-directed mode. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Received signal strength-based localization systems usually rely on a calibration process that aims at characterizing the propagation channel. However, due to the changing environmental dynamics, the behavior of the channel may change after some time, thus, recalibration processes are necessary to maintain the positioning accuracy. This paper proposes a dynamic calibration method to initially calibrate and subsequently update the parameters of the propagation channel model using a Least Mean Squares approach. The method assumes that each anchor node in the localization infrastructure is characterized by its own propagation channel model. In practice, a set of sniffers is used to collect RSS samples, which will be used to automatically calibrate each channel model by iteratively minimizing the positioning error. The proposed method is validated through numerical simulation, showing that the positioning error of the mobile nodes is effectively reduced. Furthermore, the method has a very low computational cost; therefore it can be used in real-time operation for wireless resource-constrained nodes.
Resumo:
El control, o cancelación activa de ruido, consiste en la atenuación del ruido presente en un entorno acústico mediante la emisión de una señal igual y en oposición de fase al ruido que se desea atenuar. La suma de ambas señales en el medio acústico produce una cancelación mutua, de forma que el nivel de ruido resultante es mucho menor al inicial. El funcionamiento de estos sistemas se basa en los principios de comportamiento de los fenómenos ondulatorios descubiertos por Augustin-Jean Fresnel, Christiaan Huygens y Thomas Young entre otros. Desde la década de 1930, se han desarrollado prototipos de sistemas de control activo de ruido, aunque estas primeras ideas eran irrealizables en la práctica o requerían de ajustes manuales cada poco tiempo que hacían inviable su uso. En la década de 1970, el investigador estadounidense Bernard Widrow desarrolla la teoría de procesado adaptativo de señales y el algoritmo de mínimos cuadrados LMS. De este modo, es posible implementar filtros digitales cuya respuesta se adapte de forma dinámica a las condiciones variables del entorno. Con la aparición de los procesadores digitales de señal en la década de 1980 y su evolución posterior, se abre la puerta para el desarrollo de sistemas de cancelación activa de ruido basados en procesado de señal digital adaptativo. Hoy en día, existen sistemas de control activo de ruido implementados en automóviles, aviones, auriculares o racks de equipamiento profesional. El control activo de ruido se basa en el algoritmo fxlms, una versión modificada del algoritmo LMS de filtrado adaptativo que permite compensar la respuesta acústica del entorno. De este modo, se puede filtrar una señal de referencia de ruido de forma dinámica para emitir la señal adecuada que produzca la cancelación. Como el espacio de cancelación acústica está limitado a unas dimensiones de la décima parte de la longitud de onda, sólo es viable la reducción de ruido en baja frecuencia. Generalmente se acepta que el límite está en torno a 500 Hz. En frecuencias medias y altas deben emplearse métodos pasivos de acondicionamiento y aislamiento, que ofrecen muy buenos resultados. Este proyecto tiene como objetivo el desarrollo de un sistema de cancelación activa de ruidos de carácter periódico, empleando para ello electrónica de consumo y un kit de desarrollo DSP basado en un procesador de muy bajo coste. Se han desarrollado una serie de módulos de código para el DSP escritos en lenguaje C, que realizan el procesado de señal adecuado a la referencia de ruido. Esta señal procesada, una vez emitida, produce la cancelación acústica. Empleando el código implementado, se han realizado pruebas que generan la señal de ruido que se desea eliminar dentro del propio DSP. Esta señal se emite mediante un altavoz que simula la fuente de ruido a cancelar, y mediante otro altavoz se emite una versión filtrada de la misma empleando el algoritmo fxlms. Se han realizado pruebas con distintas versiones del algoritmo, y se han obtenido atenuaciones de entre 20 y 35 dB medidas en márgenes de frecuencia estrechos alrededor de la frecuencia del generador, y de entre 8 y 15 dB medidas en banda ancha. ABSTRACT. Active noise control consists on attenuating the noise in an acoustic environment by emitting a signal equal but phase opposed to the undesired noise. The sum of both signals results in mutual cancellation, so that the residual noise is much lower than the original. The operation of these systems is based on the behavior principles of wave phenomena discovered by Augustin-Jean Fresnel, Christiaan Huygens and Thomas Young. Since the 1930’s, active noise control system prototypes have been developed, though these first ideas were practically unrealizable or required manual adjustments very often, therefore they were unusable. In the 1970’s, American researcher Bernard Widrow develops the adaptive signal processing theory and the Least Mean Squares algorithm (LMS). Thereby, implementing digital filters whose response adapts dynamically to the variable environment conditions, becomes possible. With the emergence of digital signal processors in the 1980’s and their later evolution, active noise cancellation systems based on adaptive signal processing are attained. Nowadays active noise control systems have been successfully implemented on automobiles, planes, headphones or racks for professional equipment. Active noise control is based on the fxlms algorithm, which is actually a modified version of the LMS adaptive filtering algorithm that allows compensation for the acoustic response of the environment. Therefore it is possible to dynamically filter a noise reference signal to obtain the appropriate cancelling signal. As the noise cancellation space is limited to approximately one tenth of the wavelength, noise attenuation is only viable for low frequencies. It is commonly accepted the limit of 500 Hz. For mid and high frequencies, conditioning and isolating passive techniques must be used, as they produce very good results. The objective of this project is to develop a noise cancellation system for periodic noise, by using consumer electronics and a DSP development kit based on a very-low-cost processor. Several C coded modules have been developed for the DSP, implementing the appropriate signal processing to the noise reference. This processed signal, once emitted, results in noise cancellation. The developed code has been tested by generating the undesired noise signal in the DSP. This signal is emitted through a speaker simulating the noise source to be removed, and another speaker emits an fxlms filtered version of the same signal. Several versions of the algorithm have been tested, obtaining attenuation levels around 20 – 35 dB measured in a tight bandwidth around the generator frequency, or around 8 – 15 dB measured in broadband.
Resumo:
Neural networks can be regarded as statistical models, and can be analysed in a Bayesian framework. Generalisation is measured by the performance on independent test data drawn from the same distribution as the training data. Such performance can be quantified by the posterior average of the information divergence between the true and the model distributions. Averaging over the Bayesian posterior guarantees internal coherence; Using information divergence guarantees invariance with respect to representation. The theory generalises the least mean squares theory for linear Gaussian models to general problems of statistical estimation. The main results are: (1)~the ideal optimal estimate is always given by average over the posterior; (2)~the optimal estimate within a computational model is given by the projection of the ideal estimate to the model. This incidentally shows some currently popular methods dealing with hyperpriors are in general unnecessary and misleading. The extension of information divergence to positive normalisable measures reveals a remarkable relation between the dlt dual affine geometry of statistical manifolds and the geometry of the dual pair of Banach spaces Ld and Ldd. It therefore offers conceptual simplification to information geometry. The general conclusion on the issue of evaluating neural network learning rules and other statistical inference methods is that such evaluations are only meaningful under three assumptions: The prior P(p), describing the environment of all the problems; the divergence Dd, specifying the requirement of the task; and the model Q, specifying available computing resources.
Resumo:
2010 Mathematics Subject Classification: 60J80.