991 resultados para leaf tissue
Resumo:
Knowing the structure and distribution of nutrients in plant tissues can clarify some mechanisms of pathogen attack in plants and plant defense against infection, thus helping management strategies. The aim of this study was verify differences in distribution of mineral nutrients in coffee leaf tissues around foliar lesions of bacterial blight of coffee, blister spot, cercospora leaf, phoma leaf spot and coffee leaf rust. Fragments of leaf tissue surrounding the lesions were dehydrated in silica gel, carbon covered and subjected to X-ray microanalysis (MAX). Thirty-three chemical elements were detected in leaf tissue; however, there was variation in potassium and calcium contents surrounding the lesions. The highest potassium content was found in asymptomatic tissues surrounding the lesions, decreasing toward the transition zone and reaching minimum content in symptomatic tissues. The highest calcium content was found in symptomatic tissues, decreasing toward the transition zone and reaching minimum content in asymptomatic tissues. Therefore, MAX can be used to analyze the composition and distribution of nutrients in plant tissues and, if associated with mineral nutrition, it may help understand host-pathogen relationships and plant disease management.
Resumo:
Protein extracted from root and leaf tissue of the dicotyledonous plants pea (Pisum sativum) and broad bean (Vicia faba) and the monocotyledonous plants wheat (Triticum aestivum) and barley (Hordeum vulgare) were shown to catalyze the incorporation of biotin-labeled cadaverine into microtiter-plate-bound N′,N′-dimethylcasein and the cross-linking of biotin-labeled casein to microtiter-plate-bound casein in a Ca2+-dependent manner. The cross-linking of biotinylated casein and the incorporation of biotin-labeled cadaverine into N′,N′-dimethylcasein were time-dependent reactions with a pH optimum of 7.9. Transglutaminase activity was shown to increase over a 2-week growth period in both the roots and leaves of pea. The product of transglutaminase's protein-cross-linking activity, ε-(γ-glutamyl)-lysine isodipeptide, was detected in root and shoot protein from pea, broad bean, wheat, and barley by cation-exchange chromatography. The presence of the isodipeptide was confirmed by reversed-phase chromatography. Hydrolysis of the isodipeptide after cation-exchange chromatography confirmed the presence of glutamate and lysine.
Resumo:
Natural ventilation system facilitates gaseous exchanges in in vitro plants promoting changes in the leaf tissue, which can be evaluated through the leaf anatomy, and it allows a cultivation closer to the photoautrophic micropropagation. The objective of this work was to evaluate the effects on in vitro growth and on the leaf anatomy of Cattleya walkeriana grown in natural and conventional ventilation system with different concentrations of sucrose (0; 15; 30 and 45 L-1) combined with different cultivation systems (conventional micropropagation and natural ventilation system). The culture medium was composed of MS salts, solidified with 7 g L-1 of agar and pH adjusted to 5.8. Forty milliliters of culture medium were distributed in 250 mL flasks, autoclaved at 120 ºC for 20 minutes. The greater plant growth, as well as the greater thickness of the mesophyll was observed with the use of 20 g L-1 sucrose in natural ventilation system. Plants grown in natural ventilation system showed a thicker leaf mesophyll, which is directly related to photoautotrophic crops. The natural ventilation system induced more elliptical stomata and probably more functional formats.
Resumo:
Magnaporthe oryzae causes rice blast, the most serious foliar fungal disease of cultivated rice (Oryza sativa). During hemibiotrophic leaf infection, the pathogen simultaneously combines biotrophic and necrotrophic growth. Here, we provide cytological and molecular evidence that, in contrast to leaf tissue infection, the fungus adopts a uniquely biotrophic infection strategy in roots for a prolonged period and spreads without causing a loss of host cell viability. Consistent with a biotrophic lifestyle, intracellularly growing hyphae of M. oryzae are surrounded by a plant-derived membrane. Global, temporal gene expression analysis used to monitor rice responses to progressive root infection revealed a rapid but transient induction of basal defense-related gene transcripts, indicating perception of the pathogen by the rice root. Early defense gene induction was followed by suppression at the onset of intracellular fungal growth, consistent with the biotrophic nature of root invasion. By contrast, during foliar infection, the vast majority of these transcripts continued to accumulate or increased in abundance. Furthermore, induction of necrotrophy-associated genes during early tissue penetration, previously observed in infected leaves, was not seen in roots. Collectively, our results not only report a global characterization of transcriptional root responses to a biotrophic fungal pathogen but also provide initial evidence for tissue-adapted fungal infection strategies.
Resumo:
The survival of micropropagated plants during and after acclimatization is a limiting process to plant establishment. There is little information on how the anatomy of vegetative organs of Ficus carica can be affected by culture conditions and acclimatization. The present research aimed to study the effects of time on culture medium and substrates during the acclimatization of fig tree plantlets produced in vitro, characterizing some leaf anatomy aspects of plantlets cultured in vitro and of fig trees produced in field. Plantlets previously multiplied in vitro were separated and transferred into Wood Plant Medium (WPM) where they were kept for 0, 15, 30, 45 and 60 days. Different substrates were tested and studies on leaf anatomy were performed in order to compare among plantlets grown in vitro, plantlets under 20, 40 and 60 days of acclimatization, and field grown plants. Keeping plantlets for 30 days in WPM allowed better development in Plantmax during acclimatization. Field grown plants presented higher number of stomata, greater epicuticular wax thickness and greater leaf tissue production compared to in vitro ones. The leaf tissues of in vitro plantlets show little differentiation and have great stomata number compared with acclimatized plants, which reduce the number of stomata during the acclimatization process.
Resumo:
The hypothesis that rapid y-aminobutyric acid (GABA) accumulation is a plant defense against phytophagous insects was investigated. Simulation of mechanical damage resulting from phytophagous insect activity increased soybean (Glycine max L.) leaf GABA 10- to 25-fold within 1 to 4 min. Pulverizing leaf tissue resulted in a value of 2. 15 (±O. 11 SE) ~mol GABA per gram fresh weight. Increasing the GABA levels in a synthetic diet from 1.6 to 2.6 Jlffiol GABA per gram fresh weight reduced the growth rates, developmental rates, total biomass (50% reduction), and survival rates (30% reduction) of cultured Oblique banded leaf-roller (OBLR) (Choristonellra rosacealla Harris) larvae. In field experiments OBLR larvae were found predominantly on young terminal leaves which have a reduced capacity to produce GABA in response to mechanical damage. Glutamate decarboxylase (GAD) is a cytosolic enzyme which catalyses the decarboxylation of L-Glu to GABA. GAD is a calmodulin binding enzyme whose activity is stimulated dramatically by increased cytosolic H+ or Ca2 + ion concentrations. Phytophagous insect activity will disrupt the cellular compartmentation of H+ and Ca2 +, activate GAD and subsequent GABA accumulation. In animals GABA is a major inhibitory neurotransmitter. The possible mechanisms resulting in GABA inhibited growth and development of insects are discussed.
Resumo:
The effect of powdery mildew development on photosynthesis, chlorophyll fluorescence, leaf chlorophyll and carotenoid concentrations on three woody plants frequently planted in urban environments was studied. Rates of photosynthetic CO2 fixation were rapidly reduced in two of the three genotypes tested prior to visible signs of infection. Effects on chlorophyll fluorescence (Fo, Fv/Fo, Fv/Fm), leaf chlorophyll and carotenoid content were not manifest until >25 per cent of the leaf area was observed to be covered by mycelial growth indicating reduced photo-synthetic rates during the early stages of infection were not due to degradation of the leaf chloroplast structure. Observation of the fluorescence transient (OJIP curves) showed powdery mildew infection impairs photosynthetic electron transport system by reducing the size but not heterogeneity of the plastoquninone pool, effecting both the acceptor and donor side of photosystem II. Impairment of the photosynthetic electron transport system was reflected by reduced values of a performance index used in this investigation as a measure of photochemical events within photosystem II electron transport. In addition interpretation of the fluorescence data indicated powdery mildew infection may impair the photo-protective process that facilitates the dissipation of excess energy within leaf tissue.
Resumo:
A seringueira é uma planta de fácil reconhecimento por ser lenhosa, de porte mediano a grande, que apresenta um padrão característico de desfolha e reenfolhamento e, sobretudo, pela produção de látex. O objetivo do trabalho foi efetuar um estudo anatômico e morfológico foliar, comparando os clones RRIM 600 e GT 1 de seringueira &91;Hevea brasiliensis (Wild. ex Adr. de Juss.) Muell.- Arg&93;, desenvolvidos sob as mesmas condições edáficas e climáticas, para obtenção de informações que possam fornecer subsídios para correlações com dados fisiológicos e também diferenciar os clones em relação ao conteúdo de fibras, espessamento de tecidos do parênquima paliçádico e do parênquima lacunoso, caracterização anatômica do pecíolo, número e tamanho de estômatos e fornecer dados referentes a morfologia foliolar. Foram realizadas secções transversais na região do mesófilo, nervura central e pecíolo, seguindo-se os métodos usuais de preparação de lâminas permanentes. Foram realizadas análises biométricas de extensões de tecidos dos parênquimas paliçádico e lacunoso e contagem do número de células do parênquima lacunoso. Paralelamente foram realizadas análises biométricas para aferições de estômatos. Não houve diferenças para a altura das células epidérmicas, altura e número de camadas do parênquima lacunoso e para o comprimento e para a maior largura do limbo foliolar. Porém houve variação para a espessura das células do parênquima paliçádico, sendo que GT 1 apresentou maior espessura em relação a RRIM 600. GT1 apresentou maior número de estômatos em relação a RRIM 600, porém com menor tamanho. GT1 apresentou maior diâmetro da nervura central da folha e do pecíolo e maior quantidade de fibras de esclerênquima que RRIM 600.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of the work was to evaluate the productivity, leaf nutrient content and soil nutrient concentration in maize (Zea mays L.) grown in sequence with black oats (Avena strigosa Schreb.) under Leucaena diversifolia alley cropping agroforestry system (AFS) and traditional management system/sole crop (without trees-TS), after two years of cultivation following a randomized block design. The experiment was carried out in the Brazilian Association of Biodynamic Agriculture, in Botucatu—S?o Paulo, Brazil. Treatments were: control (C), chemical fertilizer application (F), biomass of L. diversifolia alley cropping application (B), biomass of L. diversifolia alley cropping + chemical fertilizer application (B + F). In the second year of management it was observed that black oat yield was higher in treatments B + F and F with significant difference in relation to the others treatments in both systems, followed by treatment B. Between systems, only treatment B showed significant difference, with higher yield value corresponding to AFS, reflecting the efficiency of AFS to promote soil fertility. Maize production presented the second year of cultivation an increasing trend in all treatments in both production systems. This result may be due to the cumulative effect of mineralization and maize straw and oats, along the experiment. How productivity was higher in the AFS system, could also be occurring effect of biological nitrogen fixation, water retention and reduction of extreme microclimate through the rows of L. diversifolia. Comparing the AFS and TS, it was observed that the concentration of N in leaf tissue was higher in the AFS treatments, probably due to nitrogen fixation performed through the rows of L. diversifolia, that is a nitrogen fixing tree species. After two years, carbon stocked in soil show higher values in the treatments biomass + fertilizer and biomass application, in both systems, AFS and TS.
Resumo:
During the last decade, leaf tatters has been reported in white oak and hackberry across several Midwestern states. Herbicide spray drift studies have shown that chloroacetamides can induce leaf tatters. The objectives of this research were to: 1) identify vulnerable bud developmental stages in hackberry and 2) determine if different commercial chloroacetamides affect severity of leaf tatters. In 2008, a preliminary spray drift experiment was conducted on mature trees from a former hackberry provenance test stand. Acetochlor (Harness), S-metolachlor (Dual II Magnum), and dimethenamid (Outlook) were applied at concentrations approximating 27%, 54%, 81%, or 108% of the recommended field rate. Three developmental stages before bud burst were present on the selected trees. Leaf tatters did not develop on the selected hackberry trees. However, symptoms were observed on neighboring, non-target hackberry trees, which had been in the leaf unfolding and expanding stages at the time of spraying. In 2009, three year old hackberry seedlings were treated with 1%, 10%, and 100% of the recommended field rate of acetochlor (Harness), S-metolachlor (Dual II Magnum), and dimethenamid (Outlook). Folded buds and two unfolding leaf developmental stages were present on seedlings. Another spray study was conducted on 32 mature hackberry trees from the provenance stand. A solution of 5608 mg a.i./L dimethenamid (Outlook) was applied to trees in the unfolding and/or expanding leaf stage. Treated trees represented four provenances. Image analysis was used to calculate seedling and mature tree leaf areas and estimate the seedling percentage of leaf tissue loss. Foliar damage was not significantly different between seedlings treated with water, 1%, or 10% of the field rate. Foliar damage was significantly different between seedlings treated with 1% or 100% of the field rate, and between seedlings treated with 10% or 100% of the field rate. Foliar damage in seedlings was not significantly different between the developmental stages. Additionally, symptoms of leaf tatters were observed on the treated mature hackberry. Future studies should focus on chloroacetamide concentrations above 10% of the recommended field rate.
Resumo:
Fungal pathogens perceive and respond to molecules from the plant, triggering pathogenic development. Transduction of these signals may use heterotrimeric G proteins, and it is thought that protein phosphorylation cascades are also important. We have isolated a mitogen-activated protein kinase homolog from the corn pathogen Cochliobolus heterostrophus to test its role as a component of the transduction pathways. The new gene, CHK1, has a deduced amino acid sequence 90% identical to Pmk1 of the rice blast fungus Magnaporthe grisea and 59% identical to Fus3 of Saccharomyces cerevisiae. A series of chk1 deletion mutants has poorly developed aerial hyphae, autolysis, and no conidia. No pseudothecia are formed when a cross between two Δchk1 mutants is attempted. The ability of Δchk1 mutants to infect corn plants is reduced severely. The growth pattern of hyphae on a glass surface is strikingly altered from that of the wild type, forming coils or loops, but no appressoria. This set of phenotypes overlaps only partially with that of pmk1 mutants, the homologous gene of the rice blast fungus. In particular, sexual and asexual sporulation both require Chk1 function in Cochliobolus heterostrophus, in contrast to Pmk1, but perhaps more similar to yeast, where Fus3 transmits the mating signal. Chk1 is required for efficient colonization of leaf tissue, which can be compared with filamentous invasive growth of yeast, modulated through another closely related mitogen-activated protein kinase, Kss1. Ubiquitous signaling elements thus are used in diverse ways in different plant pathogens, perhaps the result of coevolution of the transducers and their targets.
Resumo:
The number of studies of tropical tree species that use molecular tools is increasing, most of which collect leaf tissue for genomic DNA extraction. In tropical trees the canopy is not only frequently inaccessible, but also, once reached, the leaf tissue is often heavily defended against herbivory by high concentrations of anti-predation compounds, which may inhibit downstream applications, particularly PCR. Cambium tissue, accessed directly from the tree trunk at ground level, offers a readily accessible resource that is less hampered by the presence of defensive chemicals than leaf tissue. Here we describe a simple method for obtaining tissue from the cambial zone for DNA extraction and test the applicability of the method in a range of tropical tree species. The method was used successfully to extract DNA from 11 species in nine families. A subset of the DNA extracts was tested in more detail and proved to be highly suitable for AFLP analysis.
Resumo:
A seringueira é uma planta de fácil reconhecimento por ser lenhosa, de porte mediano a grande, que apresenta um padrão característico de desfolha e reenfolhamento e, sobretudo, pela produção de látex. O objetivo do trabalho foi efetuar um estudo anatômico e morfológico foliar, comparando os clones RRIM 600 e GT 1 de seringueira &91;Hevea brasiliensis (Wild. ex Adr. de Juss.) Muell.- Arg&93;, desenvolvidos sob as mesmas condições edáficas e climáticas, para obtenção de informações que possam fornecer subsídios para correlações com dados fisiológicos e também diferenciar os clones em relação ao conteúdo de fibras, espessamento de tecidos do parênquima paliçádico e do parênquima lacunoso, caracterização anatômica do pecíolo, número e tamanho de estômatos e fornecer dados referentes a morfologia foliolar. Foram realizadas secções transversais na região do mesófilo, nervura central e pecíolo, seguindo-se os métodos usuais de preparação de lâminas permanentes. Foram realizadas análises biométricas de extensões de tecidos dos parênquimas paliçádico e lacunoso e contagem do número de células do parênquima lacunoso. Paralelamente foram realizadas análises biométricas para aferições de estômatos. Não houve diferenças para a altura das células epidérmicas, altura e número de camadas do parênquima lacunoso e para o comprimento e para a maior largura do limbo foliolar. Porém houve variação para a espessura das células do parênquima paliçádico, sendo que GT 1 apresentou maior espessura em relação a RRIM 600. GT1 apresentou maior número de estômatos em relação a RRIM 600, porém com menor tamanho. GT1 apresentou maior diâmetro da nervura central da folha e do pecíolo e maior quantidade de fibras de esclerênquima que RRIM 600.