975 resultados para lead (Pb)
Resumo:
Dating of sediment cores from the Baltic Sea has proven to be difficult due to uncertainties surrounding the 14C reservoir age and a scarcity of macrofossils suitable for dating. Here we present the results of multiple dating methods carried out on cores in the Gotland Deep area of the Baltic Sea. Particular emphasis is placed on the Littorina stage (8 ka ago to the present) of the Baltic Sea and possible changes in the 14C reservoir age of our dated samples. Three geochronological methods are used. Firstly, palaeomagnetic secular variations (PSV) are reconstructed, whereby ages are transferred to PSV features through comparison with varved lake sediment based PSV records. Secondly, lead (Pb) content and stable isotope analysis are used to identify past peaks in anthropogenic atmospheric Pb pollution. Lastly, 14C determinations were carried out on benthic foraminifera (Elphidium spec.) samples from the brackish Littorina stage of the Baltic Sea. Determinations carried out on smaller samples (as low as 4 µg C) employed an experimental, state-of-the-art method involving the direct measurement of CO2 from samples by a gas ion source without the need for a graphitisation step - the first time this method has been performed on foraminifera in an applied study. The PSV chronology, based on the uppermost Littorina stage sediments, produced ten age constraints between 6.29 and 1.29 cal ka BP, and the Pb depositional analysis produced two age constraints associated with the Medieval pollution peak. Analysis of PSV data shows that adequate directional data can be derived from both the present Littorina saline phase muds and Baltic Ice Lake stage varved glacial sediments. Ferrimagnetic iron sulphides, most likely authigenic greigite (Fe3S4), present in the intermediate Ancylus Lake freshwater stage sediments acquire a gyroremanent magnetisation during static alternating field (AF) demagnetisation, preventing the identification of a primary natural remanent magnetisation for these sediments. An inferred marine reservoir age offset (deltaR) is calculated by comparing the foraminifera 14C determinations to a PSV & Pb age model. This deltaR is found to trend towards younger values upwards in the core, possibly due to a gradual change in hydrographic conditions brought about by a reduction in marine water exchange from the open sea due to continued isostatic rebound.
Resumo:
O chumbo é utilizado em muitos produtos, tais como baterias, gasolina, tintas e corantes, resultando na sua libertação no meio ambiente. Neste trabalho, foi examinado o papel da parede celular da levedura Saccharomyces cerevisiae como uma barreira ou como alvo da toxicidade do chumbo. A biodisponibilidade do Pb é muito reduzida pelos componentes do meio de cultura YEPD, o que dificulta a avaliação da toxicidade deste elemento em concentrações ambientalmente realistas. Para avaliar a toxicidade de Pb em S. cerevisiae, em condições de crescimento, foram efetuadas diferentes diluições (10-100 vezes) do meio YEPD, as quais foram misturadas com várias concentrações de Pb (0,1-1,0 mmol/l). Observou-se que o YEPD diluído 25 vezes constituía a melhor condição de compromisso entre o crescimento celular e a precipitação de Pb. Os genes CWP1 e CWP2 codificam para duas grandes manoproteínas da parede celular da levedura S. cerevisiae; a deleção destes genes CWP aumenta a permeabilidade da parede celular. A suscetibilidade de células de levedura interrompidas no gene CWP1 (estirpe cwp1Δ) ou CWP2 (estirpe cwp2Δ) foi comparada com a da estirpe, isogénica, selvagem (WT). Verificou-se que o crescimento das estirpes cwp1Δ e cwp2Δ, no meio de cultura YEPD 25 vezes diluído, na presença de Pb, não diferiu do crescimento da estirpe WT. Este resultado sugere que a alteração da permeabilidade da parede celular não altera a sensibilidade de células de levedura ao Pb. Foi investigada o impacto do Pb na parede celular de levedura. Para este efeito, comparou-se a suscetibilidade ao dodecil sulfato de sódio (SDS), ao calcofluor (CFW) e a uma enzima que degrada a parede da célula (liticase), em células da estirpe WT não expostas ou expostas a Pb durante 4, 8 ou 24 h. Além disso, o conteúdo de quitina da parede celular de levedura foi investigada por coloração das células com CFW. Os resultados não mostraram uma alteração da suscetibilidade ao SDS e ao CFW, nas células tratadas com Pb; contudo, nas células tratadas durante 24 h com Pb, observou-se um aumento da sensibilidade à liticase e um aumento da coloração com CFW. Estes resultados sugerem que o chumbo interage com a parede celular da levedura e influencia a sua composição. Deve ser levado a cabo trabalho adicional a fim de confirmar estes resultados.
Resumo:
Community gardening in cities is increasing, driven by social interaction and food security. City soils are sinks for heavy metals; including neurotoxic lead (Pb). Exposure routes are primarily through inhalation/ingestion of soil, or second by ingestion of plants that have accumulated Pb. This research evaluates soil at three Liberty City, Florida sites estimating risk of Pb exposure through primary and secondary pathways. Soil cores were collected from Liberty City, and red Malabar spinach (Basella rubra) was grown in Pb soil treatments in a greenhouse. Total soil Pb levels and plant tissues were measured after acid digestion, by ICP-OES. In Liberty City, two sites had hotspots with areas of elevated soil Pb levels. Plants grown on Pb contaminated soil all accumulated statistically significant Pb concentrations. Therefore, there is a potential risk of Pb exposure to residents in Liberty City by exposure in hotspot sites through both the primary and secondary pathways.
Resumo:
The present work has as objective to contribute for the elucidation of the mechanism associated with Pb detoxification, using the yeast Saccharomyces cerevisiae as a model organism. The deletion of GTT1 or GTT2 genes, coding for functional glutathione transferases (GST) enzymes in S. cerevisiae, caused an increased susceptibility to high Pb concentrations (500-1000 μmol L(-1)). These results suggest that the formation of glutathione-Pb conjugate (GS-Pb), dependent of GSTs, is important in Pb detoxification. The involvement of ATP-binding cassette (ABC) vacuolar transporters, belonging to class C subfamily (ABCC) in vacuolar compartmentalization of Pb, was evaluated. For this purpose, mutant strains disrupted in YCF1, VMR1, YBT1 or BPT 1 genes were used. All mutants tested, without vacuolar ABCC transporters, presented an increased sensitivity to 500-1000 μmol L(-1) Pb comparative to wild-type strain. Taken together, the obtained results suggest that Pb detoxification, by vacuolar compartmentalization, can occur as a result of the concerted action of GSTs and vacuolar ABCC transporters. Pb is conjugated with glutathione, catalysed by glutathione transferases and followed to the transport of GS-Pb conjugate to the vacuole by ABCC transporters.
Resumo:
Lead (Pb) poisoning of cattle has been relatively common in Australia and sump oil has been identified as an important cause of Pb toxicity for cattle because they seem to have a tendency to drink it. Lead-free petrol has been available in Australia since 1975, so the aim of this study was to assess the current risk to cattle from drinking used automotive oils. Sump or gear box oil was collected from 56 vehicles being serviced. The low levels of Pb found suggest that the removal of leaded petrol from the Australian market as a public health measure has benefited cattle by eliminating the risk of acute poisoning from used engine oil.
Resumo:
Lead (Pb) and cadmium (Cd) are known reproductive toxicants, which accumulate in granulosa cells of the ovary. Female Charles foster rats were treated with sodium acetate (control), lead acetate and cadmium acetate either alone or in combination at a dose 0.05 mg/kg body weight intra-peritoneally for 15 days daily. Animals were killed at proestrous stage and granulosa cells were isolated from the ovaries. Binding of I-125-luteinizing hormone (I-125-LH), I-125-follicle stimulating hormone (I-125-FSH) and 17 beta-hydroxysteroid dehydrogenase activity were measured. As these receptors are localized on the surface of the cell membrane, we also estimated the membrane parameters of these cells. Our results demonstrated that both lead and cadmium caused a significant reduction in gonadotropin binding, which altered steroidogenic enzyme activity of granulosa cells. These changes exhibited a positive correlation with membrane changes of the granulosa cells.
Resumo:
A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.
Resumo:
This work presents a new electrode, 2-benzoylnaphtho 2,1-b]furan hydrazone exfoliated graphite paste electrode (B-EGPE) fabricated for the differential pulse anodic stripping voltammetric determination of lead (Pb). Under the optimal conditions, Pb2+ could be detected in the concentration range from 2.75 x 10(-7) to 1.5 x 10(-6) mol/L with the linear regression equation, y = 19.41 x 10(-6) x + 0.4249 x 10(-9) with R = 0.99. Interferences from other ions were investigated and the proposed method was further applied to the trace levels of Pb2+ detection in real samples with satisfactory results.
Resumo:
Numerous observations in clinical and preclinical studies indicate that the developing brain is particular sensitive to lead (Pb)'s pernicious effects. However, the effect of gestation-only Pb exposure on cognitive functions at maturation has not been studied. We investigated the potential effects of three levels of Pb exposure (low, middle, and high Pb: 0.03%, 0.09%, and 0.27% of lead acetate-containing diets) at the gestational period on the spatial memory of young adult offspring by Morris water maze spatial learning and fixed location/visible platform tasks. Our results revealed that three levels of Pb exposure significantly impaired memory retrieval in male offspring, but only female offspring at low levels of Pb exposure showed impairment of memory retrieval. These impairments were not due to the gross disturbances in motor performance and in vision because these animals performed the fixed location/visible platform task as well as controls, indicating that the specific aspects of spatial learning/memory were impaired. These results suggest that exposure to Pb during the gestational period is sufficient to cause long-term learning/memory deficits in young adult offspring. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The performance of a wetland system in treating lead (Pb)/zinc (Zn) mine drainage was evaluated by using the polyurethane foam unit (PFU) microbial community (method), which has been adopted by China as a standardized procedure for monitoring water quality. The wetland system consisted of four cells with three dominant plants: Typha latifolia, Phragmites australis and Paspalum distichum. Physicochemical characteristics [pH, EC, content of total suspended solid (TSS) and metals (Pb, Zn, Cd, and Cu)] and PFU microbial community in water samples had been investigated from seven sampling sites. The results indicated that the concentrations of Pb, Zn, Cd, Cu, and TSS in the mine drainage were gradually reduced from the inlet to the outlet of the wetland system and 99%, 98%, 75%, 83%, and 68% of these metals and TSS respectively, had been reduced in concentration after the drainage passed through the wetland system. A total of 105 protozoan species were identified, the number of protozoa species and the diversity index (DI) gradually increased, while the heterotrophic index (HI) gradually decreased from the inlet to the outlet of the wetland system. The results indicated that DI, HI, and total number species of protozoa could be used as biological indicators indicating the improvement of water quality.
Resumo:
This work herein reports the approach for the simultaneous determination of heavy metal ions including cadmium (Cd(II)), lead (Pb(II)), and chromium (Cr(VI)) using a bismuth film electrode (BFE) by anodic stripping voltammertry (ASV). The BFE used was plated in situ. Due to the reduction of Cr(VI) with H2O2 in the acid medium, on one hand, the Cr(III) was produced and Cr(VI) was indirectly detected by monitoring the content of Cr(III) using square-wave ASV. On the other hand, Pb(II) was also released from the complex between Pb(II) and Cr(VI). Furthermore, the coexistence of the Cd(II) was also simultaneously detected with Pb(II) and Cr(VI) in this system as a result of the formation of an alloy with Bi. The detection limits of this method were 1.39 ppb for Cd(II), 2.47 ppb for Pb(II) and 5.27 ppb for Cr(VI) with a preconcentration time of 120 s under optimal conditions (S/N = 3), respectively. Furthermore, the sensitivity of this method can be improved by controlling the deposition time or by using a cation-exchange polymer (such as Nafion) modified electrode.
Resumo:
In order to assess the toxicity of heavy metals on the early development of Meretrix meretrix, the effects of mercury (Hg), cadmium (Cd) and lead (Pb) on embryogenesis, survival, growth and metamorphosis of larvae were investigated. The EC50 for embryogenesis was 5.4 mu g l(-1) for Hg, 1014 mu g l(-1) for Cd and 297 mu g l(-1) for Pb, respectively. The 96 h LC50 for D-shaped larvae was 14.0 mu g l(-1) for Hg, 68 mu g l(-1) for Cd and 353 mu g l(-1) for Pb, respectively. Growth was significantly retarded at 18.5 mu g l(-1) (0.1 mu M) for Hg, 104 mu g l(-1) (1 mu M) for Cd and 197 mu g l(-1) (1 mu M) for Pb, respectively. The EC50 for metamorphosis, similar to 48 h LC50, was higher than 96 h LC50. Our results indicate that the early development of M. meretrix is highly sensitive to heavy metals and can be used as a test organism for ecotoxicology bioassays in temperate and subtropical regions.
Resumo:
Micro-photonic SOI Mach-Zehnder interferometers were coated with solid-phase micro-extraction materials derived from polydimethylsiloxane to enable sensing of volatile organic compounds of the BTEX class in air. A different coating based on functionalized mesoporous silicates is used to detect lead Pb(II) with a detection limit of <;; 100 ppb in water.
Resumo:
Anthropogenically deposited lead (Pb) binds efficiently to soil organic matter, which can be mobilized through hydrologically mediated mechanisms, with implications for ecological and potable quality of receiving waters. Lead isotopic ((206)Pb/(207)Pb) ratios change down peat profiles as a consequence of long-term temporal variation in depositional sources, each with distinctive isotopic signatures. This study characterizes differential Pb transport mechanisms from deposition to streams at two small catchments with contrasting soil types in upland Wales, U.K., by determining Pb concentrations and (206)Pb/(207)Pb ratios from soil core profiles, interstitial pore waters, and stream water. Hydrological characteristics of soils are instrumental in determining the location in soil profiles of exported Pb and hence concentration and (206)Pb/(207)Pb ratios in surface waters. The highest Pb concentrations from near-surface soils are mobilized, concomitant with high dissolved organic carbon (DOC) exports, from hydrologically responsive peat soils with preferential shallow subsurface flows, leading to increased Pb concentrations in stream water and isotopic signatures more closely resembling recently deposited Pb. In more minerogenic soils, percolation of water allows Pb, bound to DOC, to be retained in mineral horizons and combined with other groundwater sources, resulting in Pb being transported from throughout the profile with a more geogenic isotopic signature. This study shows that (206)Pb/(207)Pb ratios can enhance our understanding of the provenances and transport mechanisms of Pb and potentially organic matter within upland soils.
Resumo:
Paddy rice has been likened to nictiana sp in its ability to scavenge cadmium (Cd) from soil, whereas arsenic (As) accumulation is commonly an order of magnitude higher than in other cereal crops. In areas such as those found in parts of Hunan province in south central China, base-metal mining activities and rice farming coexist. Therefore there is a considerable likelihood that lead (Pb), in addition to Cd and As, will accumulate in rice grown in parts of this region above levels suitable for human consumption. To test this hypothesis, a widespread provincial survey of rice from mine spoilt paddies (n = 100), in addition to a follow-up market grain survey (n = 122) conducted in mine impacted areas was undertaken to determine the safety of local rice supply networks. Furthermore, a specific Cd, As, and Pb biogeochemical survey of paddy soil and rice was conducted within southern China, targeting sites impacted by mining of varying intensities to calibrate rice metal(loid) transfer models and transfer factors that can be used to predict tissue loading. Results revealed a number of highly significant correlations between shoot, husk, bran, and endosperm rice tissue fractions and that rice from mining areas was enriched in Cd, As, and Pb. Sixty-five, 50, and 34% of all the mine-impacted field rice was predicted to fail national food standards for Cd, As, and Pb, respectively. Although, not as elevated as the grains from the mine-impacted field survey, it was demonstrated that metal(loid) tainted rice was entering food supply chains intended for direct human consumption.