975 resultados para lattice structure
Resumo:
Field angle dependent critical current, magneto-optical microscopy and high resolution electron microscopy studies have been performed on YBa2Cu3O7-delta thin films grown on miscut substrates. High resolution electron microscopy images show that the films studied exhibited clean epitaxial growth with a low density of antiphase boundaries and stacking faults. Any antiphase boundaries (APBs) formed near the film substrate interface rapidly healed rather than extending through the thickness of the film. Unlike vicinal films grown on annealed substrates, which contain a high density of antiphase boundaries, magneto-optical imaging showed no filamentary flux penetration in the films studied. The flux penetration is, however, asymmetric. This is associated with intrinsic pinning of flux strings by the tilted a-b planes and the dependence of the pinning force on the angle between the local field and the a-b planes. Field angle dependent critical current measurements exhibited the striking vortex channeling effect previously reported in vicinal films. By combining the results of three complementary characterization techniques it is shown that extended APB free films exhibit markedly different critical current behavior compared to APB rich films. This is attributed to the role of APB sites as strong pinning centers for Josephson string vortices between the a-b planes. (C) 2003 American Institute of Physics.
Resumo:
The performance of an adaptive filter may be studied through the behaviour of the optimal and adaptive coefficients in a given environment. This thesis investigates the performance of finite impulse response adaptive lattice filters for two classes of input signals: (a) frequency modulated signals with polynomial phases of order p in complex Gaussian white noise (as nonstationary signals), and (b) the impulsive autoregressive processes with alpha-stable distributions (as non-Gaussian signals). Initially, an overview is given for linear prediction and adaptive filtering. The convergence and tracking properties of the stochastic gradient algorithms are discussed for stationary and nonstationary input signals. It is explained that the stochastic gradient lattice algorithm has many advantages over the least-mean square algorithm. Some of these advantages are having a modular structure, easy-guaranteed stability, less sensitivity to the eigenvalue spread of the input autocorrelation matrix, and easy quantization of filter coefficients (normally called reflection coefficients). We then characterize the performance of the stochastic gradient lattice algorithm for the frequency modulated signals through the optimal and adaptive lattice reflection coefficients. This is a difficult task due to the nonlinear dependence of the adaptive reflection coefficients on the preceding stages and the input signal. To ease the derivations, we assume that reflection coefficients of each stage are independent of the inputs to that stage. Then the optimal lattice filter is derived for the frequency modulated signals. This is performed by computing the optimal values of residual errors, reflection coefficients, and recovery errors. Next, we show the tracking behaviour of adaptive reflection coefficients for frequency modulated signals. This is carried out by computing the tracking model of these coefficients for the stochastic gradient lattice algorithm in average. The second-order convergence of the adaptive coefficients is investigated by modeling the theoretical asymptotic variance of the gradient noise at each stage. The accuracy of the analytical results is verified by computer simulations. Using the previous analytical results, we show a new property, the polynomial order reducing property of adaptive lattice filters. This property may be used to reduce the order of the polynomial phase of input frequency modulated signals. Considering two examples, we show how this property may be used in processing frequency modulated signals. In the first example, a detection procedure in carried out on a frequency modulated signal with a second-order polynomial phase in complex Gaussian white noise. We showed that using this technique a better probability of detection is obtained for the reduced-order phase signals compared to that of the traditional energy detector. Also, it is empirically shown that the distribution of the gradient noise in the first adaptive reflection coefficients approximates the Gaussian law. In the second example, the instantaneous frequency of the same observed signal is estimated. We show that by using this technique a lower mean square error is achieved for the estimated frequencies at high signal-to-noise ratios in comparison to that of the adaptive line enhancer. The performance of adaptive lattice filters is then investigated for the second type of input signals, i.e., impulsive autoregressive processes with alpha-stable distributions . The concept of alpha-stable distributions is first introduced. We discuss that the stochastic gradient algorithm which performs desirable results for finite variance input signals (like frequency modulated signals in noise) does not perform a fast convergence for infinite variance stable processes (due to using the minimum mean-square error criterion). To deal with such problems, the concept of minimum dispersion criterion, fractional lower order moments, and recently-developed algorithms for stable processes are introduced. We then study the possibility of using the lattice structure for impulsive stable processes. Accordingly, two new algorithms including the least-mean P-norm lattice algorithm and its normalized version are proposed for lattice filters based on the fractional lower order moments. Simulation results show that using the proposed algorithms, faster convergence speeds are achieved for parameters estimation of autoregressive stable processes with low to moderate degrees of impulsiveness in comparison to many other algorithms. Also, we discuss the effect of impulsiveness of stable processes on generating some misalignment between the estimated parameters and the true values. Due to the infinite variance of stable processes, the performance of the proposed algorithms is only investigated using extensive computer simulations.
Resumo:
Invasion waves of cells play an important role in development, disease and repair. Standard discrete models of such processes typically involve simulating cell motility, cell proliferation and cell-to-cell crowding effects in a lattice-based framework. The continuum-limit description is often given by a reaction–diffusion equation that is related to the Fisher–Kolmogorov equation. One of the limitations of a standard lattice-based approach is that real cells move and proliferate in continuous space and are not restricted to a predefined lattice structure. We present a lattice-free model of cell motility and proliferation, with cell-to-cell crowding effects, and we use the model to replicate invasion wave-type behaviour. The continuum-limit description of the discrete model is a reaction–diffusion equation with a proliferation term that is different from lattice-based models. Comparing lattice based and lattice-free simulations indicates that both models lead to invasion fronts that are similar at the leading edge, where the cell density is low. Conversely, the two models make different predictions in the high density region of the domain, well behind the leading edge. We analyse the continuum-limit description of the lattice based and lattice-free models to show that both give rise to invasion wave type solutions that move with the same speed but have very different shapes. We explore the significance of these differences by calibrating the parameters in the standard Fisher–Kolmogorov equation using data from the lattice-free model. We conclude that estimating parameters using this kind of standard procedure can produce misleading results.
Resumo:
Cell-to-cell adhesion is an important aspect of malignant spreading that is often observed in images from the experimental cell biology literature. Since cell-to-cell adhesion plays an important role in controlling the movement of individual malignant cells, it is likely that cell-to-cell adhesion also influences the spatial spreading of populations of such cells. Therefore, it is important for us to develop biologically realistic simulation tools that can mimic the key features of such collective spreading processes to improve our understanding of how cell-to-cell adhesion influences the spreading of cell populations. Previous models of collective cell spreading with adhesion have used lattice-based random walk frameworks which may lead to unrealistic results, since the agents in the random walk simulations always move across an artificial underlying lattice structure. This is particularly problematic in high-density regions where it is clear that agents in the random walk align along the underlying lattice, whereas no such regular alignment is ever observed experimentally. To address these limitations, we present a lattice-free model of collective cell migration that explicitly incorporates crowding and adhesion. We derive a partial differential equation description of the discrete process and show that averaged simulation results compare very well with numerical solutions of the partial differential equation.
Resumo:
We propose a framework for adaptive security from hard random lattices in the standard model. Our approach borrows from the recent Agrawal-Boneh-Boyen families of lattices, which can admit reliable and punctured trapdoors, respectively used in reality and in simulation. We extend this idea to make the simulation trapdoors cancel not for a specific forgery but on a non-negligible subset of the possible challenges. Conceptually, we build a compactly representable, large family of input-dependent “mixture” lattices, set up with trapdoors that “vanish” for a secret subset which we hope the forger will target. Technically, we tweak the lattice structure to achieve “naturally nice” distributions for arbitrary choices of subset size. The framework is very general. Here we obtain fully secure signatures, and also IBE, that are compact, simple, and elegant.
Resumo:
The Linear phase(LP) Finite Impulse Response(FIR) filters are widely used in many signal processing systems which are sensitive to phase distortion. In this article, we obtain a canonic lattice structure of an LP-FIR filter with a complex impulse response. This lattice structure is based on some novel lattice stages obtained from some properties of symmetric polynomials.This canonic lattice structure exploits the redundancy in the zeros of an LP-FIR filter.
Resumo:
Diluted magnetic semiconductor (Ga,Mn)N were prepared by the implantation of Mn ions into GaN/Al2O3 substrate. Clear X-ray diffraction peak from (Ga,Mn)N is observed. It indicates that the solid solution (Ga,Mn)N phase was formed with the same lattice structure as GaN and different lattice constant. Magnetic hysteresis-loops of the (Ga,Mn)N were obtained at room temperature (293 K) with the coercivity of about 2496.97 A m(-1). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Diluted magnetic semiconductor (Ga,Mn)N were prepared by the implantation of Mn ions into GaN/Al2O3 substrate. Clear X-ray diffraction peak from (Ga,Mn)N is observed. It indicates that the solid solution (Ga,Mn)N phase was formed with the same lattice structure as GaN and different lattice constant. Magnetic hysteresis-loops of the (Ga,Mn)N were obtained at room temperature (293 K) with the coercivity of about 2496.97 A m(-1). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Frames are the most widely used structural system for multistorey buildings. A building frame is a three dimensional discrete structure consisting of a number of high rise bays in two directions at right angles to each other in the vertical plane. Multistorey frames are a three dimensional lattice structure which are statically indeterminate. Frames sustain gravity loads and resist lateral forces acting on it. India lies at the north westem end of the Indo-Australian tectonic plate and is identified as an active tectonic area. Under horizontal shaking of the ground, horizontal inertial forces are generated at the floor levels of a multistorey frame. These lateral inertia forces are transferred by the floor slab to the beams, subsequently to the columns and finally to the soil through the foundation system. There are many parameters that affect the response of a structure to ground excitations such as, shape, size and geometry of the structure, type of foundation, soil characteristics etc. The Soil Structure Interaction (SS1) effects refer to the influence of the supporting soil medium on the behavior of the structure when it is subjected to different types of loads. Interaction between the structure and its supporting foundation and soil, which is a complete system, has been modeled with finite elements. Numerical investigations have been carried out on a four bay, twelve storeyed regular multistorey frame considering depth of fixity at ground level, at characteristic depth of pile and at full depth. Soil structure interaction effects have been studied by considering two models for soil viz., discrete and continuum. Linear static analysis has been conducted to study the interaction effects under static load. Free vibration analysis and further shock spectrum analysis has been conducted to study the interaction effects under time dependent loads. The study has been extended to four types of soil viz., laterite, sand, alluvium and layered.The structural responses evaluated in the finite element analysis are bending moment, shear force and axial force for columns, and bending moment and shear force for beams. These responses increase with increase in the founding depth; however these responses show minimal increase beyond the characteristic length of pile. When the soil structure interaction effects are incorporated in the analysis, the aforesaid responses of the frame increases upto the characteristic depth and decreases when the frame has been analysed for the full depth. It has been observed that shock spectrum analysis gives wide variation of responses in the frame compared to linear elastic analysis. Both increase and decrease in responses have been observed in the interior storeys. The good congruence shown by the two finite element models viz., discrete and continuum in linear static analysis has been absent in shock spectrum analysis.
Resumo:
In the present work we study a long superconducting wire with a columnar defect in the presence of an applied magnetic field. The cross section of the cylinder is assumed to be circular. The field is taken uniform and parallel to the cylinder axis. We use the London theory to investigate the vortex lattice inside the wire. Although this theory is valid in the limit of low vortex density, that is, when the nearest neighbor vortex distance is much larger than the coherence length, we can obtain a reasonable qualitative description of lattice properties. We calculate: (1) the vortex lattice structure using the simulated annealing technique; (2) the magnetization curve as a function of the applied field.
Resumo:
In this article we study the effects of adsorbed phase compression, lattice structure, and pore size distribution on the analysis of adsorption in microporous activated carbon. The lattice gas approach of Ono-Kondo is modified to account for the above effects. Data of nitrogen adsorption at 77 K onto a number of activated carbon samples are analyzed to investigate the pore filling pressure versus pore width, the packing effect, and the compression of the adsorbed phase. It is found that the PSDs obtained from this analysis are comparable to those obtained by the DFT method. The discrete nature of the PSDs derived from the modified lattice gas theory is due to the inherent assumption of discrete layers of molecules. Nevertheless, it does provide interesting information on the evolution of micropores during the activation process.
Resumo:
Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.
Resumo:
The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.
Resumo:
Pyrite and chalcopyrite mineral samples from Mangampet barite mine, Kadapa, Andhra Pradesh, India are used in the present study. XRD data indicate that the pyrite mineral has a face centered cubic lattice structure with lattice constant 5.4179 Å. Also it possesses an average particle size of 91.9 nm. An EPR study on the powdered samples confirms the presence of iron in pyrite and iron and Mn(II) in chalcopyrite. The optical absorption spectrum of chalcopyrite indicates presence of copper which is in a distorted octahedral environment. NIR results confirm the presence of water fundamentals and Raman spectrum reveals the presence of water and sulfate ions.
Resumo:
In this article, we use some spectral properties of polynomials presented in 1] and map an auto-correlation sequence to a set of Line Spectral Frequencies(LSFs) and reflection coefficients. This novel characterization of an auto-correlation sequence is used to obtain a lattice structure of a Linear-Phase(LP) FIR filter.