924 resultados para larval dispersal
Resumo:
We synthesise and update results from the suite of biophysical, larval-dispersal models developed in the Benguela Current ecosystem. Biophysical models of larval dispersal use outputs of physical hydrodynamic models as inputs to individual-based models in which biological processes acting during the larval life are included. In the Benguela, such models were first applied to simulate the dispersal of anchovy Engraulis encrasicolus and sardine Sardinops sagax ichthyoplankton, and more recently of the early life stages of chokka-squid Loligo reynaudii and Cape hakes Merluccius spp. We identify how the models have helped advance understanding of key processes for these species. We then discuss which aspects of the early life of marine species in the Benguela Current ecosystem are still not well understood and could benefit from new modelling studies.
Resumo:
Decifrar a complexa interacção entre os ciclos de vida de espécies marinhas e a oceanografia revela-se fundamental para a compreensão do fluxo genético e da conectividade no meio marinho. Nas espécies marinhas com desenvolvimento indirecto o fluxo de genes entre populações depende da distância que separa as populações, bem como da interacção entre a duração do desenvolvimento larvar, do comportamento das larvas e dos padrões de circulação oceânica. A conectividade larvar influencia uma variedade de processos como a dinâmica de stocks e de populações, a distribuição e limites geográficos das espécies, a estrutura genética das populações e a dispersão de espécies invasivas e reveste-se consequentemente de uma importância fundamental na identificação das unidades populacionais evolucionariamente relevantes e para a gestão e conservação marinhas. Os marcadores genéticos e os Modelos Individuais Acoplados a Modelos Físico-Biológicos (“ICPBMs”) são actualmente ferramentas fundamentais para o estudo dos padrões de dispersão larvar e para avaliar o nível de conectividade populacional. A presente tese respeita à avaliação das escalas espaciais de conectividade de populações de uma espécie costeira, o caranguejo Carcinus maenas, e utiliza conjuntamente informação de marcadores genéticos, análise de séries temporais de fornecimento de larvas e um modelo numérico de circulação oceânica. O primeiro capítulo introduz a temática da conectividade em espécies marinhas e inclui algumas referências aos métodos moleculares, analíticos e de modelação seguidos ao longo da tese. Através da utilização de múltiplas ferramentas – avaliação da estrutura genética geográfica de C. maenas na sua distribuição nativa com recurso a marcadores de DNA (microssatélites) (Capítulo 2), avaliação da estrutura genética temporal das larvas que formam os eventos de fornecimento larvar à Ria de Aveiro, NW Portugal (Capítulo 3), descrição da variabilidade inter-anual do fornecimento larvar à Ria de Aveiro, NW Portugal (Capítulo 4) e validação de um modelo ICPBM que descreve os padrões observados de fornecimento (Capítulo 5) – esta tese espera poder contribuir para uma melhor compreensão dos mecanismos que regulam o fluxo de genes e a conectividade entre populações de organismos marinhos. No Capítulo 6 são apresentadas as principais conclusões da investigação. A análise genética com recurso a microssatélites indicou que as populações de C. maenas são geneticamente homogéneas ao longo de várias centenas de km, dentro da distribuição nativa da espécie. Paralelamente, não foram encontrados indícios da existência de reprodução por “sweepstakes” em C. maenas de populações da costa oeste da Península Ibérica, visto que não se obtiveram diferenças genéticas significativas entre os eventos larvares. Também não se encontrou qualquer estrutura familiar entre as larvas que formam cada episódio de fornecimento, e não houve nenhuma redução significativa da variabilidade genética das larvas quando comparada com a de caranguejos adultos. A análise de séries temporais de suprimento de larvas na Ria de Aveiro em cinco anos estudados indica que este é um fenómeno episódico e variável, sendo os maiores episódios de fornecimento coincidentes com as marés vivas e acentuados por fortes ventos de sul. O modelo ICPBM foi validado com sucesso e parece fornecer uma estimativa realística das escalas espaciais e temporais de dispersão larvar, de acordo com as observações da estrutura genética e da ausência de reprodução por “sweepstake” em C. maenas da costa oeste da Península Ibérica
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study we investigated the larval dispersal associated with larval predation in experimental populations of Chrysomya albiceps and Cochliomyia macellaria. Frequency distribution of sampling units (G test) in the substrate was used to evaluate variation in larval dispersal. An experimental acrylic channel (1 x 0.1 x 0.2 m) covered with wood shavings was used to observe larval dispersal prior to pupation. The acrylic channel was graduated at 0.05 m intervals, each representing a sampling unit; hence, 20 sampling units were set up. A Petri dish containing third instar larvae of single and double species was deposited at one edge of the acrylic channel allowing larvae to disperse. The number of buried pupae (0, 1, 2, n) present in each sampling unit was recorded. For double species, the number of recovered larvae of C. albiceps was similar to the number initially released on the dish Petri. on the other hand, the number of recovered larvae of C. macellaria was significantly smaller than the initially released number. The results show that C. albiceps attacks C. macellaria larvae during the larval dispersal process. The larval distribution of C. albiceps did not differ significantly from C. macellaria in double species, but it differed significantly in single species. The larval aggregation level of C. macellaria decreased when C. albiceps was present and the larval aggregation level of C. albiceps increased when C. macellaria was present. The implications of such findings for the population dynamics of these species are discussed.
Resumo:
In this study we investigated the larval dispersal associated with larval predation in experimental populations of Chrysomya albiceps and Cochliomyia macellaria. Frequency distribution of sampling units (G test) in the substrate was used to evaluate variation in larval dispersal. An experimental acrylic channel (1 x 0.1 x 0.2 m) covered with wood shavings was used to observe larval dispersal prior to pupation. The acrylic channel was graduated at 0.05 m intervals, each representing a sampling unit; hence, 20 sampling units were set up. A Petri dish containing third instar larvae of single and double species was deposited at one edge of the acrylic channel allowing larvae to disperse. The number of buried pupae (0, 1, 2,...n) present in each sampling unit was recorded. For double species, the number of recovered larvae of C. albiceps was similar to the number initially released on the dish Petri. on the other hand, the number of recovered larvae of C. macellaria was significantly smaller than the initially released number the results show that C. albiceps attacks C. macellaria larvae during the larval dispersal process. The larval distribution of C. albiceps did not differ significantly from C. macellaria in double species, but it differed significantly in single species. The larval aggregation level of C. macellaria decreased when C. albiceps was present and the larval aggregation level of C. albiceps increased when C. macellaria was present. The implications of such findings for the population dynamics of these species are discussed.
Resumo:
Immature and adult stages of blowflies are one of the primary invertebrate consumers of decomposing animal organic matter. When the food supply is consumed or when the larvae complete their development and migrate prior to the total removal of the larval substrate, they disperse to find adequate places for pupation, a process known as postfeeding larval dispersal. Several important ecological and physiological aspects of this process were studied since the work by Green (Ann Appl Biol 38:475, 1951) 50 years ago. An understanding of postfeeding larval dispersal can be useful for determining the postmortem interval (PMI) of human cadavers in legal medicine, particularly because this interval may be underestimated if older dispersing larvae or those that disperse longer, faster, and deeper are not taken into account. In this article, we review the process of postfeeding larval dispersal and its implications for legal medicine, in particular showing that aspects such as burial behavior and competition among species of blowflies can influence this process and consequently, the estimation of PMI.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study we investigate aggregated patterns as a consequence of post-feeding larval dispersal in three blowfly species, based on the frequency distribution of sampling units in the substrate having 0, 1, 2,..., n pupae. Statistical analysis revealed that aggregated patterns of distribution emerge as a consequence of larval dispersal, and Cochliomyia macellaria has higher levels of aggregation when compared to Chrysomya megacephala and C. putoria. Aggregation during dispersal is associated with a spatial pattern where most larvae in the species tend to pupariate near the food source. The possible consequences for the population ecology of these species are discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
When the food supply flnishes, or when the larvae of blowflies complete their development and migrate prior to the total removal of the larval substrate, they disperse to find adequate places for pupation, a process known as post-feeding larval dispersal. Based on experimental data of the Initial and final configuration of the dispersion, the reproduction of such spatio-temporal behavior is achieved here by means of the evolutionary search for cellular automata with a distinct transition rule associated with each cell, also known as a nonuniform cellular automata, and with two states per cell in the lattice. Two-dimensional regular lattices and multivalued states will be considered and a practical question is the necessity of discovering a proper set of transition rules. Given that the number of rules is related to the number of cells in the lattice, the search space is very large and an evolution strategy is then considered to optimize the parameters of the transition rules, with two transition rules per cell. As the parameters to be optimized admit a physical interpretation, the obtained computational model can be analyzed to raise some hypothetical explanation of the observed spatiotemporal behavior. © 2006 IEEE.
Theoretical approaches to forensic entomology: I. Mathematical model of postfeeding larval dispersal
Resumo:
An overall theoretical approach to model phenomena of interest for forensic entomology is advanced. Efforts are concentrated in identifying biological attributes at the individual, population and community of the arthropod fauna associated with decomposing human corpses and then incorporating these attributes into mathematical models. In particular in this paper a diffusion model of dispersal of post feeding larvae is described for blowflies, which are the most common insects associated with corpses.
Resumo:
We analysed simulated connectivity patterns for reef fish larvae in the Cairns section of the Great Barrier Reef, and identified 2 key subregions that exhibit regional scale source–sink dynamics. The source and sink were separated latitudinally by a boundary at 16.1°S, with the source subregion lying to the north. Larval transport between the 2 subregions was predominantly unidirectional, from north to south. Only a few local populations, described here as ‘gateway reefs’, were able to transport larvae from the sink subregion to the source subregion and thus maintain the connectedness of the metapopulation. The northern subregion was able to persist without external larval supply, but when conditions were recruitment limited, the southern subregion depended on larval supply from the north to persist. The relative autonomy of the northern subregion, and its importance in sustaining the southern subregion, will influence the effectiveness of conservation efforts.
Resumo:
The identification of sea bass (Centropristis) larvae to species is difficult because of similar morphological characters, spawning times, and overlapping species ranges. Black sea bass (Centropristis striata) is an important fishery species and is currently considered to be overfished south of Cape Hatteras, North Carolina. We describe methods for identifying three species of sea bass larvae using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) assays based on species-specific amplification of rDNA internal transcribed spacer regions. The assays were tested against DNA of ten other co-occurring reef fish species to ensure the assay's specificity. Centropristis larvae were collected on three cruises during cross-shelf transects and were used to validate the assays. Seventy-six Centropristis larva were assayed and 69 (91%) were identified successfully. DNA was not amplified from 5% of the larvae and identification was inconclusive for 3% of the larvae. Those assays can be used to identify sea bass eggs and larvae and will help to assess spawning locations, spawning times, and larval dispersal.