996 resultados para larva-development
Resumo:
Studies on development of H. longifilis (Curvier and Valenciennes, 1840) were conducted at a temperature of 25EC ( 1Ec) in aquaria tanks continuous development were monitored with the use of wild Heerbrugy photomacroscope and length of yolk and larva were monitored using Stereo Olympus microscope with ocular micrometer. The division into animal and vegetal poles was observed 22 minutes after activation. The first cleavage occurred 65 minutes after activation while the second division which was perpendicular to the first line of division occurred 74 minutes after activation. This was quickly followed by the third and fourth cleavage at 80th and 82nd minutes after activation respectively. Morular stage was reached at 4 hours 20 minutes with formation of optic bud at 14 hours 35 minutes. (DBO) Developing embryo hatched after 27 hours of activation at a mean length of 6.63 and mean yolk length of 2.17. Yolk size decrease at an average rate of 38.5 % till the 5th day of total absorption. Growth of larvae proceeded faster in tail-anus region than in anus-snout portion of the body. The rate of yolk absorption and larva development (survival) as monitored in this work gives important information in Research and development programme for H. longifilis larva - an important aspect of Research development and implementation of appropriate technologies in small scale fisheries
Resumo:
Chinese sturgeon (Acipenser sinensis) is a rare and endangered species and also an important resource for the sturgeon aquaculture industry. SMART cDNA was synthesized from the hypothalamus of Chinese sturgeon, and the full-length cDNAs of two somatostatin (SS) genes were cloned and sequenced. The first cDNA (AsSS1) encodes a 116-amino acid protein that contains the SS14 sequence at its C-terminal extremity. AsSS1 shows high identity to that of human and other vertebrates. The second cDNA (AsSS2) encodes a 111-amino acid protein that contains the somatostatin variant [Pro(2)]-SS14 at its C-terminal extremity. Both the two SS mRNAs were expressed in brain and pituitary with different mRNA levels. But in peripheral tissues, AsSS2 was more widely distributed than AsSS1. High mRNA levels of AsSS2 were found in liver, kidney and heart, while low mRNA levels of AsSS2 were also detected in ovary. Throughout embryogenesis and early larval development only AsSS2 mRNAs were detected. Furthermore, in the hypothalamus of one to five year-old Chinese sturgeon, AsSS2 but not AsSS1 maintained stable expression. The mRNA distribution suggests that the Chinese sturgeon AsSS2 products play important physiological functions in adult fish as well as in cell growth and organ differentiation in embryo and larva development. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In addition to the strong influence of the broodstock diet on the development and survival of offspring, domestication may also interfere with the larval life success. We obtained eggs from wild and domesticated Salminus hilarii females and domesticated males. Wild females were caught in the Tiete River and tributaries, and the domesticated females were born three years before the beginning of the experiment in the Ponte Nova Fish Farm. Animals from both groups were fed with the same feed to exclude feed variables. The eggs and larvae were sampled at 0, 8, 16, and 28 h after spawning (HAS), with the last sampling (28 HAS) coinciding with hatching time. After hatching, samplings proceeded at 32, 48, 66, and 96 HAS, with the last sampling (96 HAS) corresponding to the end of yolk sac consumption. Finally, the last experimental period was during the larvae exogenous feeding phase, at 102, 118, 166, and 214 HAS. Our data revealed that domestication of S. hilarii females influenced fatty acid (FA) metabolism during embryo and larva development. However, the structure of membrane phospholipid FA remained mostly stable, with changes principally in the neutral fraction. When the external conditions, mainly water and feed quality, remained constant, domestication of S. hilarii females did not significantly affect the structural FA composition but influenced the selectivity of consumption and/or storage of specific FA.
Resumo:
Gliazellen kommen in allen höheren Organismen vor und sind sowohl für die korrekte Entwicklung, als auch für die Funktionalität des adulten Nervensystems unerlässlich. Eine der mannigfachen Funktionen dieses Zelltyps ist die Umhüllung von Axonen im zentralen und peripheren Nervensystem (ZNS und PNS). Um eine vollständige Umhüllung zu gewährleisten, wandern Gliazellen während der Neurogenese zum Teil über enorme Distanzen von ihrem Entstehungsort aus. Dies trifft insbesondere auf die Gliazellen zu, durch deren Membranausläufer die distalen Axonbereiche der peripheren Nerven isoliert werden.rnIn dieser Arbeit wurde die Migration von Gliazellen anhand des Modelorganismus Drosophila untersucht. Ein besonderes Interesse galt dabei der Wanderung einer distinkten Population von Gliazellen, den sogenannten embryonalen Peripheren Gliazellen (ePG). Die ePGs werden überwiegend im sich entwickelnden ventralen Bauchmark geboren und wandern anschließend entlang der peripheren Nerventrakte nach dorsal aus, um diese bis zum Ende der Embryogenese zu umhüllen und dadurch die gliale Blut-Nerv-Schranke zu etablieren. Das Hauptziel dieser Arbeit bestand darin, neue Faktoren bzw. Mechanismen aufzudecken, durch welche die Migration der ePGs reguliert wird. Dazu wurde zunächst der wildtypische Verlauf ihrer Wanderung detailliert analysiert. Es stellte sich heraus, dass in jedem abdominalen Hemisegment eine invariante Anzahl von 12 ePGs von distinkten neuralen Vorläuferzellen generiert wird, die individuelle Identitäten besitzen und mittels molekularer Marker auf Einzelzellebene identifiziert werden können. Basierend auf der charakteristischen Lage der Zellen erfolgte die Etablierung einer neuen, konsistenten Nomenklatur für sämtliche ePGs. Darüber hinaus offenbarten in vivo Migrationsanalysen, dass die Wanderung individueller ePGs stereotyp verläuft und demzufolge weitestgehend prädeterminiert ist. Die genaue Kenntnis der wildtypischen ePG Migration auf Einzelzellebene diente anschließend als Grundlage für detaillierte Mutantenanalysen. Anhand derer konnte für den ebenfalls als molekularen Marker verwendeten Transkriptionsfaktor Castor eine Funktion als zellspezifische Determinante für die korrekte Spezifizierung der ePG6 und ePG8 nachgewiesen werden, dessen Verlust in einem signifikanten Migrationsdefekt dieser beiden ePGs resultiert. Des Weiteren konnte mit Netrin (NetB) der erste diffusible und richtungsweisende Faktor für die Migration von ePGs enthüllt werden, der in Interaktion mit dem Rezeptor Uncoordinated5 speziell die Wanderung der ePG6 und ePG8 leitet. Die von den übrigen Gliazellen unabhängige Navigation der ePG6 und ePG8 belegt, dass zumindest die Migration von Gruppen der ePGs durch unterschiedliche Mechanismen kontrolliert wird, was durch die Resultate der durchgeführten Ablationsexperimente bestätigt wird. rnFerner konnte gezeigt werden, dass während der frühen Gliogenese eine zuvor unbekannte, von Neuroblasten bereitgestellte Netrinquelle an der initialen Wegfindung der Longitudinalen Gliazellen (eine Population Neuropil-assoziierter Gliazellen im ZNS) beteiligt ist. In diesem Kontext erfolgt die Signaldetektion bereits in deren Vorläuferzelle, dem Longitudinalen Glioblasten, zellautonom über den Rezeptor Frazzled. rnFür künftige Mutantenscreens zur Identifizierung weiterer an der Migration der ePGs beteiligter Faktoren stellt die in dieser Arbeit präsentierte detaillierte Beschreibung eine wichtige Grundlage dar. Speziell in Kombination mit den vorgestellten molekularen Markern liefert sie die Voraussetzung dafür, individuelle ePGs auch im mutanten Hintergrund zu erfassen, wodurch selbst subtile Phänotypen überhaupt erst detektiert und auf Einzelzellebene analysiert werden können. Aufgrund der aufgezeigten voneinander unabhängigen Wegfindung, erscheinen Mutantenanalysen ohne derartige Möglichkeiten wenig erfolgversprechend, da Mutationen vermutlich mehrheitlich die Migration einzelner oder weniger ePGs beeinträchtigen. Letzten Endes wird somit die Aussicht verbessert, weitere neuartige Migrationsfaktoren im Modellorganismus Drosophila zu entschlüsseln, die gegebenenfalls bis hin zu höheren Organismen konserviert sind und folglich zum Verständnis der Gliazellwanderung in Vertebraten beitragen.
Resumo:
The embryonic development in Clarias gariepinus was studied under laboratory conditions. The developmental stages of eggs starting from first cleavage were examined microscopically. Photomicroscope was used to take important stages of segmentation, blastulation, differentiation of embryo and hatching. The films of the photograph were developed and printed for each stage produced. The accurate timing and detailed description of each stage was done. The results show that the blastodisc (Polar cap) appeared about 35 minutes after fertilization and the first cleavage dividing the blastodisc into two blastomeres occurs 15 minutes after polar cap formation. Details of the developmental stages of embryos and the timing from one stage to the other were described. The larva shook off the shell and emerged completely from the egg case about 22 hours after fertilization at a water temperature of 25.1 degree C. The accurate determination of the time of initiation of first mitosis is of great importance in fish culture and breeding especially in the production of tetraploids
Resumo:
Heteropneustes fossilis was induced bred for the first time in the agro-climatic conditions of Maharashtra, India. The embryonic development was completed within 16-18h after fertilisation. Head and tail ends were distinguishable after 3h and 11-12 somites were visible after 6-7h. The eggs started hatching after 14h of incubation. Average hatching time was 16-18h at 26 degrees C. In first day old pro-larva, notochord was deflected upwards, eyes were darkly pigmented and alimentary canal appeared. In fourth day old post-larva intestinal coiling could be seen and yolk was absorbed. Aerial respiration started by 8th day. The 10 day old post-larva was free swimming and fed voraciously attaining a length of 20 mm in 30 days.
Resumo:
Quantitative assays of trypsin, amylase and alkaline phosphatases were made in relation to age and food during the larval development of the Indian major carp Catla catla. The responses of all the test enzymes to age and food were identical. No enzymes were detected from the fertilized eggs. Detectable amount of enzymes were first observed in the first day old hatchlings. All the test enzymes in the group fed normal feed tended to rise gradually with advancement of age till day 22 after which an asymptotic level was attained. Absence of food throughout the rearing period caused the enzymatic activity of the larva to remain at the lowest level throughout. When starvation was followed by feeding, enzymatic activity in the former group was consistently higher than that of latter, suggesting that feeding activity was primarily responsible in maintaining the enzymatic activity of carp larva. The enzymatic activity of zooplankton was significantly higher than carp larva till day 6 to 12 after which the latter exceeded the former implying that carp larva during development utilizes the exogenous enzymes of zooplankton.
Resumo:
Mystus gulio eggs are strongly adhesive and contain relatively small yolk (0.75-1.0 mm). The egg envelop is thick and transparent. First cleavage (two cells), four cells, eight cells, sixteen cells and multi cells stages were found 20, 25, 35-40, 60 and 70 minutes after fertilization, respectively. The morula stage was visualized within 1.5 h after fertilization. The heart beat visible and the circulatory system commenced after 16 h of fertilization. Embryos hatched 18-20h after activation of egg. The newly hatched larva measured 2.82±0.03 mm in length and 0.32±0.06 mg in weight. The yolk sac was fully absorbed by the third day though larvae commenced exogenous feeding even before completion of yolk absorption. A 5-day old post larva began wandering in search of food. Ten-day old post larvae endowed with eight branched rays in dorsal fin and seven in caudal fin. Fifteen-day old post larvae had the pectm:al spine become stout though the embryonic fin folds had to be disappeared. The length of fingerlings ranged from 25-30 mm after 30 days, and their external features were just like those of an adult except that they were not sexually matured.
Resumo:
Seed rearing is an important part in large scale clam culture industry. Since the nutritional history affects early development in bivalve, the condition of larval nutrition plays a key role in successful seed rearing. So far, the molecular mechanism of nutrient uptake in bivalve larvae is unclear. As one of the important proteolytic enzymes, cathepsin B of several organisms has been reported to be involved in digestion. We intended to analyze whether cathepsin B is involved in larval nutrient metabolism in the economic bivalve, clam Meretrix meretrix. The full length of M. meretrix cathepsin B (MmeCB) cDNA was cloned, which is 1647 bp with an open reading frame of 1014 bp. The deduced amino acid sequence encoded a preproenzyme of 337 residues with Cys-114, His-282 and Asn-302 composing cathepsin B activity center. The temporal and spatial expressions of MmeCB mRNA were examined from trochophore to post larva stages by whole mount in situ hybridization. In trochophore stage, no detectable signal was found. In the later three stages, MmeCB mRNA was detected in the digestive gland, suggesting a possible role of MmeCB in digestion. Moreover, MmeCB mRNA was also observed in the epidermal cells in D-veligers. Cathepsin B specific inhibitor (CA074 methyl ester) was applied to block the activity of cathepsin B in unfed larvae. The average shell lengths of treated larvae were smaller than that in control groups. The results of mRNA epidermal distribution and inhibitor treatment in D-veligers indicated that MmeCB may be also associated with other pathway of nutrient metabolism in larval epidermis. The overall results in this paper revealed that MmeCB might play a role in larval nutrient metabolism. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
It is widely appreciated that larvae of the nematode Caenorhabditis elegans arrest development by forming dauer larvae in response to multiple unfavorable environmental conditions. C. elegans larvae can also reversibly arrest development earlier, during the first larval stage (L1), in response to starvation. "L1 arrest" (also known as "L1 diapause") occurs without morphological modification but is accompanied by increased stress resistance. Caloric restriction and periodic fasting can extend adult lifespan, and developmental models are critical to understanding how the animal is buffered from fluctuations in nutrient availability, impacting lifespan. L1 arrest provides an opportunity to study nutritional control of development. Given its relevance to aging, diabetes, obesity and cancer, interest in L1 arrest is increasing, and signaling pathways and gene regulatory mechanisms controlling arrest and recovery have been characterized. Insulin-like signaling is a critical regulator, and it is modified by and acts through microRNAs. DAF-18/PTEN, AMP-activated kinase and fatty acid biosynthesis are also involved. The nervous system, epidermis, and intestine contribute systemically to regulation of arrest, but cell-autonomous signaling likely contributes to regulation in the germline. A relatively small number of genes affecting starvation survival during L1 arrest are known, and many of them also affect adult lifespan, reflecting a common genetic basis ripe for exploration. mRNA expression is well characterized during arrest, recovery, and normal L1 development, providing a metazoan model for nutritional control of gene expression. In particular, post-recruitment regulation of RNA polymerase II is under nutritional control, potentially contributing to a rapid and coordinated response to feeding. The phenomenology of L1 arrest will be reviewed, as well as regulation of developmental arrest and starvation survival by various signaling pathways and gene regulatory mechanisms.
Resumo:
Epidermal growth factor receptor pathway substrate clone 15 (Eps15) is a protein implicated in endocytosis, endosomal protein sorting, and cytoskeletal organization. Its role is, however, still unclear, because of reasons including limitations of dominant-negative experiments and apparent redundancy with other endocytic proteins. We generated Drosophila eps15-null mutants and show that Eps15 is required for proper synaptic bouton development and normal levels of synaptic vesicle (SV) endocytosis. Consistent with a role in SV endocytosis, Eps15 moves from the center of synaptic boutons to the periphery in response to synaptic activity. The endocytic protein, Dap160/intersectin, is a major binding partner of Eps15, and eps15 mutants phenotypically resemble dap160 mutants. Analyses of eps15 dap160 double mutants suggest that Eps15 functions in concert with Dap160 during SV endocytosis. Based on these data, we hypothesize that Eps15 and Dap160 promote the efficiency of endocytosis from the plasma membrane by maintaining high concentrations of multiple endocytic proteins, including dynamin, at synapses.
Resumo:
Tese de mestrado. Biologia (Microbiologia Aplicada). Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
The influence of temperature on the developmental times and survival of insects can largely determine their distribution. For invasive species, like the Argentine ant, Linepithema humile Mayr (Hymenoptera: Formicidae), these data are essential for predicting their potential range based on mechanistic models. In the case of this species, such data are too scarce and incomplete to make accurate predictions based on its physiological needs. This research provides comprehensive new data about brood survival and developmental times at a wide range of temperatures under laboratory conditions. Temperature affected both the complete brood development from egg to adult worker and each of the immature stages separately. The higher the temperature, the shorter the development times. Brood survival from egg to adult was low, with the maximum survival rate being only 16% at 26º C. Temperature also affected survival of each of the immature stages differently: eggs were negatively affected by high temperatures, while larvae were negatively affected by low temperatures, and the survival of pupae was apparently independent of environmental temperature. At 32º C no eggs survived, while at 18º C less than 2% of the eggs hatched into larva. The data from the present study are essential for developing prediction models about the distribution range of this tramp species based on its physiological needs in relation to temperature
Resumo:
This work investigates the acceptance of different food types and sizes by Macrobrachium rosenbergii during each larval stage. Food intake of dry and wet formulated diets of four different size classes (250-425, 425-710, 710-1000 and 1000-1190 mum), as well as Artemia nauplii, was determined. Larvae of each zoeal stage were stocked in beakers and fed ad libitum. After 30-45 min, the digestive tract of each larva was observed under a stereomicroscope. Acceptance was evaluated by food intake frequency (FFI). There was no significant interaction (P<0.05) between inert diet size and FFI for each larval stage. Therefore, food intake during larval development is independent of food particle size. The ingestion of Artemia nauplii, was significantly higher by larvae between stages II and VI. Between stages VII and XI, FFI for Artemia nauplii and wet diet was similar, while the FFI of the dry diet was similar to live food between stages IX and XI. The wet diet was ingested by more than 50% of the larvae only from stage VII onwards, while the dry diet from stage VIII onwards. These results indicate that larvae could be fed Artemia nauplii only until stage VI. Diet supplementation should start from stage VII onwards, using food particles varying from 250 to 1190 mum. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)