981 resultados para large vector autoregression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a vast literature that specifies Bayesian shrinkage priors for vector autoregressions (VARs) of possibly large dimensions. In this paper I argue that many of these priors are not appropriate for multi-country settings, which motivates me to develop priors for panel VARs (PVARs). The parametric and semi-parametric priors I suggest not only perform valuable shrinkage in large dimensions, but also allow for soft clustering of variables or countries which are homogeneous. I discuss the implications of these new priors for modelling interdependencies and heterogeneities among different countries in a panel VAR setting. Monte Carlo evidence and an empirical forecasting exercise show clear and important gains of the new priors compared to existing popular priors for VARs and PVARs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We use a factor-augmented vector autoregression (FAVAR) to estimate the impact of monetary policy shocks on the cross-section of stock returns. Our FAVAR combines unobserved factors extracted from a large set of nancial and macroeconomic indicators with the Federal Funds rate. We nd that monetary policy shocks have heterogeneous e ects on the crosssection of stock returns. These e ects are very well explained by the degree of external nance dependence, as well as by other sectoral characteristics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Há mais de uma década o controle dos níveis de preço na economia brasileira é realizado dentro do escopo do Regime de Metas de Inflação, que utiliza modelos macroeconômicos como instrumentos para guiar as tomadas de decisões sobre política monetária. Após um período de relativo êxito (2006 - 2009), nos últimos anos apesar dos esforços das autoridades monetárias na aplicação das políticas de contenção da inflação, seguindo os mandamentos do regime de metas, esta tem se mostrado resistente, provocando um debate em torno de fatores que podem estar ocasionando tal comportamento. Na literatura internacional, alguns trabalhos têm creditado aos choques de oferta, especialmente aos desencadeados pela variação dos preços das commodities, uma participação significativa na inflação, principalmente em economias onde os produtos primários figuram como maioria na pauta exportadora. Na literatura nacional, já existem alguns trabalhos que apontam nesta mesma direção. Sendo assim, buscou-se, como objetivo principal para o presente estudo, avaliar como os choques de oferta, mais especificamente os choques originados pelos preços das commodities, têm impactado na inflação brasileira e como e com que eficiência a política monetária do país tem reagido. Para tanto, foi estimado um modelo semiestrutural contendo uma curva de Phillips, uma curva IS e duas versões da Função de Reação do Banco Central, de modo a verificar como as decisões de política monetária são tomadas. O método de estimação empregado foi o de Autorregressão Vetorial com Correção de Erro (VEC) na sua versão estrutural, que permite uma avaliação dinâmica das relações de interdependência entre as variáveis do modelo proposto. Por meio da estimação da curva de Phillips foi possível observar que os choques de oferta, tanto das commodities como da produtividade do trabalho e do câmbio, não impactam a inflação imediatamente, porém sua relevância é crescente ao longo do tempo chegando a prevalecer sobre o efeito autorregressivo (indexação) verificado. Estes choques também se apresentaram importantes para o comportamento da expectativa de inflação, produzindo assim, uma indicação de que seus impactos tendem a se espalhar pelos demais setores da economia. Através dos resultados da curva IS constatou-se a forte inter-relação entre o hiato do produto e a taxa de juros, o que indica que a política monetária, por meio da fixação de tal taxa, influencia fortemente a demanda agregada. Já por meio da estimação da primeira função de reação, foi possível perceber que há uma relação contemporânea relevante entre o desvio da expectativa de inflação em relação à meta e a taxa Selic, ao passo que a relação contemporânea do hiato do produto sobre a taxa Selic se mostrou pequena. Por fim, os resultados obtidos com a segunda função de reação, confirmaram que as autoridades monetárias reagem mais fortemente aos sinais inflacionários da economia do que às movimentações que acontecem na atividade econômica e mostraram que uma elevação nos preços das commodities, em si, não provoca diretamente um aumento na taxa básica de juros da economia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Alterações Climáticas e Políticas de Desenvolvimento Sustentável

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our empirical literature review shows that little is known about how firm performance changes with age, presumably because of the paucity of data on firm age. For Spanish manufacturing firms, we analyse the firm performance related to firm age between 1998 and 2006. We find evidence that firms improve with age, because ageing firms are observed to have steadily increasing levels of productivity, higher profits, larger size, lower debt ratios, and higher equity ratios. Furthermore, older firms are better able to convert sales growth into subsequent growth of profits and productivity. On the other hand, we also found evidence that firm performance deteriorates with age. Older firms have lower expected growth rates of sales, profits and productivity, they have lower profitability levels (when other variables such as size are controlled for), and also that they appear to be less capable to convert employment growth into growth of sales, profits and productivity. Keywords: firm age, firm growth, LAD, financial structure, vector autoregression JEL CODES: L25, L20

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper combines multivariate density forecasts of output growth, inflationand interest rates from a suite of models. An out-of-sample weighting scheme based onthe predictive likelihood as proposed by Eklund and Karlsson (2005) and Andersson andKarlsson (2007) is used to combine the models. Three classes of models are considered: aBayesian vector autoregression (BVAR), a factor-augmented vector autoregression (FAVAR)and a medium-scale dynamic stochastic general equilibrium (DSGE) model. Using Australiandata, we find that, at short forecast horizons, the Bayesian VAR model is assignedthe most weight, while at intermediate and longer horizons the factor model is preferred.The DSGE model is assigned little weight at all horizons, a result that can be attributedto the DSGE model producing density forecasts that are very wide when compared withthe actual distribution of observations. While a density forecast evaluation exercise revealslittle formal evidence that the optimally combined densities are superior to those from thebest-performing individual model, or a simple equal-weighting scheme, this may be a resultof the short sample available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this thesis is to research mean return spillovers as well as volatility spillovers from the S&P 500 stock index in the USA to selected stock markets in the emerging economies in Eastern Europe between 2002 and 2014. The sample period has been divided into smaller subsamples, which enables taking different market conditions as well as the unification of the World’s capital markets during the financial crisis into account. Bivariate VAR(1) models are used to analyze the mean return spillovers while the volatility linkages are analyzed through the use of bivariate BEKK-GARCH(1,1) models. The results show both constant volatility pooling within the S&P 500 as well as some statistically significant spillovers of both return and volatility from the S&P 500 to the Eastern European emerging stock markets. Moreover, some of the results indicate that the volatility spillovers have increased as time has passed, indicating unification of global stock markets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Meese-Rogoff forecasting puzzle states that foreign exchange (FX) rates are unpredictable. Since one country’s macroeconomic conditions could affect the price of its national currency, we study the dynamic relations between the FX rates and some macroeconomic accounts. Our research tests whether the predictability of the FX rates could be improved through the advanced econometrics. Improving the predictability of the FX rates has important implications for various groups including investors, business entities and the government. The present thesis examines the dynamic relations between the FX rates, savings and investments for a sample of 25 countries from the Organization for Economic Cooperation and Development. We apply quarterly data of FX rates, macroeconomic indices and accounts including the savings and the investments over three decades. Through preliminary Augmented Dickey-Fuller unit root tests and Johansen cointegration tests, we found that the savings rate and the investment rate are cointegrated with the vector (1,-1). This result is consistent with many previous studies on the savings-investment relations and therefore confirms the validity of the Feldstein-Horioka puzzle. Because of the special cointegrating relation between the savings rate and investment rate, we introduce the savings-investment rate differential (SID). Investigating each country through a vector autoregression (VAR) model, we observe extremely insignificant coefficient estimates of the historical SIDs upon the present FX rates. We also report similar findings through the panel VAR approach. We thus conclude that the historical SIDs are useless in forecasting the FX rate. Nonetheless, the coefficients of the past FX rates upon the current SIDs for both the country-specific and the panel VAR models are statistically significant. Therefore, we conclude that the historical FX rates can conversely predict the SID to some degree. Specifically, depreciation in the domestic currency would cause the increase in the SID.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose methods for testing hypotheses of non-causality at various horizons, as defined in Dufour and Renault (1998, Econometrica). We study in detail the case of VAR models and we propose linear methods based on running vector autoregressions at different horizons. While the hypotheses considered are nonlinear, the proposed methods only require linear regression techniques as well as standard Gaussian asymptotic distributional theory. Bootstrap procedures are also considered. For the case of integrated processes, we propose extended regression methods that avoid nonstandard asymptotics. The methods are applied to a VAR model of the U.S. economy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse par articles examine les causes et conséquences économiques des politiques d'immigration du point de vue des pays receveurs. Je soutiens que les politiques d'immigration affectent la composition industrielle, et que l'immigration non-qualifiée a ralenti le développement des secteurs haute-technologie dans les pays de l'OCDE au cours des dernières décennies. Néanmoins, les gouvernements élus ont des incitatifs à accroître les niveaux d'immigration et à admettre des immigrants non-qualifiés, afin de conserver l'appui du secteur privé, et de façon à éviter les réactions négatives qui résulteraient de l'affaiblissement des industries traditionnelles. Le premier article s'appuie sur un modèle de progrès technologique endogène et soutient que les activités de recherche des entreprises croissent avec l'offre relative en travail qualifié, et se contractent avec l'offre relative en travail non-qualifié. À l'aide de données panel sur les pays de l'OCDE entre 1971 et 2003, j'estime l'élasticité des dépenses en R&D par rapport à l'offre relative de facteurs au moyen d'un modèle OLS dynamique (DOLS). Les résultats sont conséquents avec les propositions théoriques, et je démontre que l'immigration non-qualifiée a ralenti l'intensité des investissements privés en R&D. Le deuxième article examine la réponse des gouvernements fédéraux canadiens au lobbying des entreprises sur l'enjeu de l'immigration, à l'aide de données trimestrielles entre 1996 et 2011. J'argue que les gouvernements ont des incitatifs électoraux à accroître les niveaux d'immigration malgré les préférences restrictives du public sur cet enjeu, afin de s'assurer de l'appui des groupes d'intérêt corporatifs. Je teste cet argument à l'aide d'un modèle vectoriel autorégressif. Un résultat clé est la réponse positive des influx de travailleurs temporaires à l'intensité du lobbying des entreprises. Le troisième article soutient que les gouvernements ont des incitatifs à gérer la sélection des immigrants de façon à préserver la composition industrielle régionale. Je teste cet argument avec des données panel sur les provinces canadiennes entre 2001 et 2010, et un devis de recherche basé sur l'approche des doubles moindres carrés (two-stage least squares). Les résultats tendent à appuyer l'argument principal : les provinces dont l'économie repose davantage sur des industries traditionnelles sont susceptibles de recevoir une plus grande proportion d'immigrants non-qualifiés, ce qui contribue à renforcer cette spécialisation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One reason for the recent asset price bubbles in many developed countries could be regulatory capital arbitrage. Regulatory and legal changes can help traditional banks to move their assets off their balance sheets into the lightly regulated shadows and thus enable regulatory arbitrage through the securitized sector. This paper adopts a global vector autoregression (GVAR) methodology to assess the effects of regulatory capital arbitrage on equity prices, house prices and economic activity across 11 OECD countries/ regions. A counterfactual experiment disentangles the effects of regulatory arbitrage following a change in the net capital rule for investment banks in April 2004 and the adoption of the Basel II Accord in June 2004. The results provide evidence for the existence of an international finance multiplier, with about half of the countries overshooting U.S. impulse responses. The counterfactual shows that regulatory arbitrage via the U.S. securitized sector may enhance the cross-country reallocation of capital from housing markets towards equity markets.