936 resultados para large spatial scale


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Daily rainfall datasets of 10 years (1998-2007) of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) version 6 and India Meteorological Department (IMD) gridded rain gauge have been compared over the Indian landmass, both in large and small spatial scales. On the larger spatial scale, the pattern correlation between the two datasets on daily scales during individual years of the study period is ranging from 0.4 to 0.7. The correlation improved significantly (similar to 0.9) when the study was confined to specific wet and dry spells each of about 5-8 days. Wavelet analysis of intraseasonal oscillations (ISO) of the southwest monsoon rainfall show the percentage contribution of the major two modes (30-50 days and 10-20 days), to be ranging respectively between similar to 30-40% and 5-10% for the various years. Analysis of inter-annual variability shows the satellite data to be underestimating seasonal rainfall by similar to 110 mm during southwest monsoon and overestimating by similar to 150 mm during northeast monsoon season. At high spatio-temporal scales, viz., 1 degrees x1 degrees grid, TMPA data do not correspond to ground truth. We have proposed here a new analysis procedure to assess the minimum spatial scale at which the two datasets are compatible with each other. This has been done by studying the contribution to total seasonal rainfall from different rainfall rate windows (at 1 mm intervals) on different spatial scales (at daily time scale). The compatibility spatial scale is seen to be beyond 5 degrees x5 degrees average spatial scale over the Indian landmass. This will help to decide the usability of TMPA products, if averaged at appropriate spatial scales, for specific process studies, e.g., cloud scale, meso scale or synoptic scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic habitat alterations and water-management practices have imposed an artificial spatial scale onto the once contiguous freshwater marshes of the Florida Everglades. To gain insight into how these changes may affect biotic communities, we examined whether variation in the abundance and community structure of large fishes (SL . 8 cm) in Everglades marshes varied more at regional or intraregional scales, and whether this variation was related to hydroperiod, water depth, floating mat volume, and vegetation density. From October 1997 to October 2002, we used an airboat electrofisher to sample large fishes at sites within three regions of the Everglades. Each of these regions is subject to unique watermanagement schedules. Dry-down events (water depth , 10 cm) occurred at several sites during spring in 1999, 2000, 2001, and 2002. The 2001 dry-down event was the most severe and widespread. Abundance of several fishes decreased significantly through time, and the number of days post-dry-down covaried significantly with abundance for several species. Processes operating at the regional scale appear to play important roles in regulating large fishes. The most pronounced patterns in abundance and community structure occurred at the regional scale, and the effect size for region was greater than the effect size for sites nested within region for abundance of all species combined, all predators combined, and each of the seven most abundant species. Non-metric multi-dimensional scaling revealed distinct groupings of sites corresponding to the three regions. We also found significant variation in community structure through time that correlated with the number of days post-dry-down. Our results suggest that hydroperiod and water management at the regional scale influence large fish communities of Everglades marshes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The effect of spatial scale on the interactions between three hymenopteran parasitoids and their weevil hosts was investigated. The parasitoid Mesopolobus incultus (Walker) parasitised Gymnetron pascuorum Gyll.; the parasitoids Entodon sparetus (Walker) and Bracon sp. parasitised Mecinus pyraster Herbst. Both of these weevils develop inside the seedhead of Plantago lanceolata L. but occupy different niches. Seedheads were sampled annually from 162 plants at each of two experimental sites consisting of a series of habitat patches of two distinct sizes. Data were analysed from three site-years. 2. Parasitoid densities at each site-year were closely related to the abundance of their respective weevil hosts. The overall proportion of hosts parasitised was more variable for M. incultus than for E. sparetus and Bracon sp. 3. Changes in spatial scale affected the variability of parasitoid densities. For M. incultus, there was generally a greater degree of additional heterogeneity for all increases of scale; for E. sparetus, this was true only at the largest scales; for Bracon sp., all components of variance were negative. 4. The rate of parasitism was related to host density in different ways at different spatial scales. Mesopolobus incultus exhibited inverse density dependence at the finest (seedhead) scale, direct density dependence at the intermediate (plant) scale, and density independence at the large (habitat area 729 m2) scale. Entodon sparetus showed no response to variation in host density at any spatial scale. Bracon sp. showed direct density dependence only at the intermediate and largest scales. 5. Parasitoids E. sparetus and Bracon sp. seemed able to detect more than one M. pyraster individual in seedheads with multiple host occupancy; a greater incidence of conspecific parasitoids than expected emerged from such seedheads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catchment and riparian degradation has resulted in declining ecosystem health of streams worldwide. With restoration a priority in many regions, there is an increasing interest in the scale at which land use influences stream ecosystem health. Our goal was to use a substantial data set collected as part of a monitoring program (the Southeast Queensland, Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six years) to identify the spatial scale of land use, or the combination of spatial scales, that most strongly influences overall ecosystem health. In addition, we aimed to determine whether the most influential scale differed for different aspects of ecosystem health. We used linear-mixed models and a Bayesian model-averaging approach to generate models for the overall aggregated ecosystem health score and for each of the five component indicators (fish, macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score. Dense forest close to the survey site, mid-dense forest in the hydrologically active nearstream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach scale were all significant in explaining ecosystem health, suggesting an overriding influence of forest cover, particularly close to the stream. Season and antecedent rainfall were also important explanatory variables, with some land-use variables showing significant seasonal interactions. There were also differential influences of land use for each of the component indicators. Our approach is useful given that restoring general ecosystem health is the focus of many stream restoration projects; it allowed us to predict the scale and catchment position of restoration that would result in the greatest improvement of ecosystem health in the regions streams and rivers. The models we generated suggested that good ecosystem health can be maintained in catchments where 80% of hydrologically active areas in close proximity to the stream have mid-dense forest cover and moderate health can be obtained with 60% cover.