984 resultados para lambda calculus types, mathematical logic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi si descrive il lambda calcolo finito, un'istanza del lambda calcolo con tipi finiti. Si studia la metateoria e la complessità della riduzione.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous works we showed how to combine propositional multimodal logics using Gabbay's \emph{fibring} methodology. In this paper we extend the above mentioned works by providing a tableau-based proof technique for the combined/fibred logics. To achieve this end we first make a comparison between two types of tableau proof systems, (\emph{graph} $\&$ \emph{path}), with the help of a scenario (The Friend's Puzzle). Having done that we show how to uniformly construct a tableau calculus for the combined logic using Governatori's labelled tableau system \KEM. We conclude with a discussion on \KEM's features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuzzy set theory and Fuzzy logic is studied from a mathematical point of view. The main goal is to investigatecommon mathematical structures in various fuzzy logical inference systems and to establish a general mathematical basis for fuzzy logic when considered as multi-valued logic. The study is composed of six distinct publications. The first paper deals with Mattila'sLPC+Ch Calculus. THis fuzzy inference system is an attempt to introduce linguistic objects to mathematical logic without defining these objects mathematically.LPC+Ch Calculus is analyzed from algebraic point of view and it is demonstratedthat suitable factorization of the set of well formed formulae (in fact, Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning of the paper. On its basis, all the theorems presented by Mattila and many others can be proved in a simple way which is demonstrated in the Lemmas 1 and 2and Propositions 1-3. The conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no formal semantics for it is given.In the second paper the characterization of solvability of the relational equation RoX=T, where R, X, T are fuzzy relations, X the unknown one, and o the minimum-induced composition by Sanchez, is extended to compositions induced by more general products in the general value lattice. Moreover, the procedure also applies to systemsof equations. In the third publication common features in various fuzzy logicalsystems are investigated. It turns out that adjoint couples and residuated lattices are very often present, though not always explicitly expressed. Some minor new results are also proved.The fourth study concerns Novak's paper, in which Novak introduced first-order fuzzy logic and proved, among other things, the semantico-syntactical completeness of this logic. He also demonstrated that the algebra of his logic is a generalized residuated lattice. In proving that the examination of Novak's logic can be reduced to the examination of locally finite MV-algebras.In the fifth paper a multi-valued sentential logic with values of truth in an injective MV-algebra is introduced and the axiomatizability of this logic is proved. The paper developes some ideas of Goguen and generalizes the results of Pavelka on the unit interval. Our proof for the completeness is purely algebraic. A corollary of the Completeness Theorem is that fuzzy logic on the unit interval is semantically complete if, and only if the algebra of the valuesof truth is a complete MV-algebra. The Compactness Theorem holds in our well-defined fuzzy sentential logic, while the Deduction Theorem and the Finiteness Theorem do not. Because of its generality and good-behaviour, MV-valued logic can be regarded as a mathematical basis of fuzzy reasoning. The last paper is a continuation of the fifth study. The semantics and syntax of fuzzy predicate logic with values of truth in ana injective MV-algerba are introduced, and a list of universally valid sentences is established. The system is proved to be semanticallycomplete. This proof is based on an idea utilizing some elementary properties of injective MV-algebras and MV-homomorphisms, and is purely algebraic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses Shannon's information theory to give a quantitative definition of information flow in systems that transform inputs to outputs. For deterministic systems, the definition is shown to specialise to a simpler form when the information source and the known inputs jointly determine the inputs. For this special case, the definition is related to the classical security condition of non-interference and an equivalence is established between non-interference and independence of random variables. Quantitative information flow for deterministic systems is then presented in relational form. With this presentation, it is shown how relational parametricity can be used to derive upper and lower bounds on information flows through families of functions defined in the second order lambda calculus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The refinement calculus provides a framework for the stepwise development of imperative programs from specifications. In this paper we study a refinement calculus for deriving logic programs. Dealing with logic programs rather than imperative programs has the dual advantages that, due to the expressive power of logic programs, the final program is closer to the original specification, and each refinement step can achieve more. Together these reduce the overall number of derivation steps. We present a logic programming language extended with specification constructs (including general predicates, assertions, and types and invariants) to form a wide-spectrum language. General predicates allow non-executable properties to be included in specifications. Assertions, types and invariants make assumptions about the intended inputs of a procedure explicit, and can be used during refinement to optimize the constructed logic program. We provide a semantics for the extended logic programming language and derive a set of refinement laws. Finally we apply these to an example derivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 4-wheel is a simple graph on 5 vertices with 8 edges, formed by taking a 4-cycle and joining a fifth vertex (the centre of the 4-wheel) to each of the other four vertices. A lambda -fold 4-wheel system of order n is an edge-disjoint decomposition of the complete multigraph lambdaK(n) into 4-wheels. Here, with five isolated possible exceptions when lambda = 2, we give necessary and sufficient conditions for a lambda -fold 4-wheel system of order n to be transformed into a lambda -fold Ccyde system of order n by removing the centre vertex from each 4-wheel, and its four adjacent edges (retaining the 4-cycle wheel rim), and reassembling these edges adjacent to wheel centres into 4-cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper necessary and sufficient conditions are given for the metamorphosis of a lambda-fold K-3,K-3-design of order n into a lambda-fold 6-cycle system of order n, by retaining one 6-cycle subgraph from each copy of K-3,K-3, and then rearranging the set of all the remaining edges, three from each K-3,K-3, into further 6-cycles so that the result is a lambda-fold 6-cycle system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing refinement calculi provide frameworks for the stepwise development of imperative programs from specifications. This paper presents a refinement calculus for deriving logic programs. The calculus contains a wide-spectrum logic programming language, including executable constructs such as sequential conjunction, disjunction, and existential quantification, as well as specification constructs such as general predicates, assumptions and universal quantification. A declarative semantics is defined for this wide-spectrum language based on executions. Executions are partial functions from states to states, where a state is represented as a set of bindings. The semantics is used to define the meaning of programs and specifications, including parameters and recursion. To complete the calculus, a notion of correctness-preserving refinement over programs in the wide-spectrum language is defined and refinement laws for developing programs are introduced. The refinement calculus is illustrated using example derivations and prototype tool support is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Timed Interval Calculus, a timed-trace formalism based on set theory, is introduced. It is extended with an induction law and a unit for concatenation, which facilitates the proof of properties over trace histories. The effectiveness of the extended Timed Interval Calculus is demonstrated via a benchmark case study, the mine pump. Specifically, a safety property relating to the operation of a mine shaft is proved, based on an implementation of the mine pump and assumptions about the environment of the mine. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática