999 resultados para lake deposit
Resumo:
Foulden Maar is a highly resolved maar lake deposit from the South Island of New Zealand comprising laminated diatomite punctuated by numerous diatomaceous turbidites. Basaltic clasts found in debris flow deposits at the base of the cored sedimentary sequence yielded two new 40Ar/39Ar dates of 24.51±0.24 Ma and 23.38±0.24 Ma (2sigma). The younger date agrees within error with a previously published 40Ar/39Ar date of 23.17±0.19 Ma from a basaltic dyke adjacent to the maar crater. The diatomite is inferred to have been deposited over several tens of thousands of years in the latest Oligocene/earliest Miocene, and may have overlapped with the period of rapid glaciation and subsequent deglaciation of Antarctica known as the Mi-1 event. Sediment magnetic properties and SEM measurements indicate that the magnetic signal is dominated by pseudo-single domain pyrrhotite. The most likely source of detrital pyrrhotite is schist country rock fragments from the inferred tephra ring created by the phreatomagmatic eruption that formed the maar. Variations in magnetic concentration and lamina thickness indicate a decrease in erosional input and increase in diatom productivity throughout the depositional period, suggesting a long-term (tens of thousands of years) climatic change in New Zealand in the latest Oligocene/earliest Miocene.
Resumo:
Faciologic analysis method was applied to after-basaltic sedimentary deposits in Triangulo Mineiro (MG) area. Faciologic association 1 (Adamantina formation) and unities 1 to 5 (Uberaba formation) are related to the fluvial and lake deposits: faciologic association 3 (Ponte Alta Member) and 2 (Sierra da Galga Member) represent the sedimentary deposits associated to the alluvial fans conditions. With faciologic association and unities it could be to recognize the paleogeografic and tectonic conditions in sedimentation time of that depositional tract. -English summary
Resumo:
Abstract. Lake Ohrid shared by the Republics of Albania and Macedonia is formed by a tectonically active graben within the south Balkans and suggested to be the oldest lake in Europe. Several studies have shown that the lake provides a valuable record of climatic and environmental changes and a distal tephrostratigraphic record of volcanic eruptions from Italy. Fault structures identified in seismic data demonstrate that sediments have also the potential to record tectonic activity in the region. Here, we provide an example of linking seismic and sedimentological information with tectonic activity and historical documents. Historical documents indicate that a major earthquake destroyed the city of Lychnidus (today: city of Ohrid) in the early 6th century AD. Multichannel seismic profiles, parametric sediment echosounder profiles, and a 10.08m long sediment record from the western part of the lake indicate a 2m thick mass wasting deposit, which is tentatively correlated with this earthquake. The mass wasting deposit is chronologically well constrained, as it directly overlays the AD472/AD 512 tephra. Moreover, radiocarbon dates and cross correlation with other sediment sequences with similar geochemical characteristics of the Holocene indicate that the mass wasting event took place prior to the onset of the Medieval Warm Period, and is attributed it to one of the known earthquakes in the region in the early 6th century AD.
Resumo:
330 km 2 of the easter-n part of the Archean Manitou Lakes - Stormy Lake metavolcanic - metasedimentary belt have been mapped and sampled. A large number of rocks ~.vere analyzed for the major and trace constituents including the rare-earth elements (REE). The Stormy Lake - Kawashegamuk Lake area may be subdivided into four major lithological groups of supracrustal rocks 1) A north-facing mafic assemblage, consisting of pillowed tholeiitic basalts and gabbro sills characterized by flat REE profiles, is exposed in the south part of the map area and belongs to a 8000 m thick homoclinal assemblage outside the map area. Felsic pyroclastic rocks believed to have been issued from a large central vent conformably overlie the tholeiites. 2) A dominantly epiclastic group facing to the north consists of terrestrial deposits interpreted to be an alluvial fan deposit ; a submarine facies is represented by turbiditic sediments. 3) The northeastern part of the study area consists of volcanic rocks belonging to two mafic - felsic cycles facing to the southuest ; andesitic flows with fractionated REE patterns make up a large part of the upper cycle, whereas the lower cycle has a stronger chemical polarity being represented by tholeiitic flows, with flat REE, which a r e succeeded by dacitic and rhyolitic pyroclasti cs. iii 4) A thick monotonous succession of tholeiitic pillmled basalt f lows and gabbro sills with flat REE represent the youngest supracrustal rocks. TIle entire belt underwent folding, faulting and granitic plutonism during a tectono-thermal event around 2700 Ma ago. Rocks exposed in the map area were subjected to regional greenschist facies metamorphism, but higher metamorphic grades are present near late granitic intrusions. Geochemical studies have been useful in 1) distinguishing the various rock units ; 2) relating volcanic and intrusive rocks 3) studying the significance of chemical changes due to post magmatic processes 4) determining the petrogenesis of the major volcanic rock types. In doing so, two major volcanic suites have been recognized : a) a tholeiitic suite, mostly represented by mafic rocks, was derived from partial melting of upper mantle material depleted in Ti, K and the light REE ; b) a calc-alkalic suite which evolved from partial melting of amphibolite in the lower crust. The more differentiated magma types have been produced by a multistage process involving partial melting and fractional crystallization to yield a continuum of compos i t i ons ranging from basaltic andesite to rhyolite. A model for the development of the eastern part of the Manitou Lakes - Stormy Lake belt has been proposed.
Resumo:
The Island Lake greenstone belt is one of the major Archean supracrustal exposures in the northwestern part of the Superior Province of the Canadian Shield. This belt is subdivided into two units: 1) a lower sequence characterised by pillowed to massive, locally pyroclastic, basalt to andesite with a thin central zone of felsic derivatives, all of which are interbedded with and overlain by thick sequences of turbidite facies rock; 2) the upper unit which consists of thick stratified conglomerate overlain by thickly bedded arkose and feldspathic greywacke. Reconnaissance sampling traverses were completed across both the strike of the belt and along its margins with adjacent granitoids. Most of the belt is within the greenschist metamorphic f acies with amphibolite facies occurring in certain areas near t he margins. A post-tectonic, low pressure thermal event may be responsible for the development of a unit of cordierite schi s t which stretches southeastwards from the east end of Cochrane Bay. Volcanism is cyclical in nature changing from tholeiitic to calc-alkaline. There is a general progression in the character of the lavas from mafic t o felsic with stratigraphic height. Chemica l d a ta sugges t that h i gh level fractionation of a mantle- derived ' dry' magma i s t he s ource of the thole i iti c lavas. Contamination of this magma with 'we t' sia l and subsequent fractionation may be r esponsi b l e for the calcalkaline phases .Observations of stratigraphic relationships (in particular the contact between the supracrustals and the granitoids) coupled with the metamorphic and chemical studies, allow the construction of a preliminary model for the evolution of the Island Lake greenstone belt. The following sequential development is suggested: 1) a platform stage characterised by the subaqueous effusion of mafic to intermediate lavas of alternating tholeiitic and calc-alkaline affinities; 2) an edifice stage marked by the eruption of felsic calc-alkaline rocks; 3) an erosional stage characterised by the deposit~on of thick sequences of turbidite facies rocks; 4) the impingement of granitic masses into the margins of the greenstone belt, which was probably related to a downward warping of the supracrustal pilei 5) the erosion of sialic massifs surrounding and within the greenstone belt and of early supracrustal piles, to give the clastic upper unit.
Resumo:
Since the first offshore Lake Erie well was drilled in 1941, the Grimsby and Thorold formations of the Cataract Group have been economically important to the oil and gas industry of Ontario. The Cataract Group provides a significant amount of Ontario's gas production primarily from wells located on Lake Erie. The Grimsby - Thorold formations are the result of nearshore estuarine processes influenced by tides on a prograding shelf and are composed of subtidal channel complexes, discrete tidal channels, mud flats and non-marine deposits. Deposition was related to a regressive - transgressive cycle associated with eustatic sea level changes caused by the melting and resurgence of continental glaciation centred in Africa in the Late Ordovician/Early Silurian. Grimsby deposition began during a regression with the deposition of subtidal channel complexes incised into the marine deposits of the Cabot Head Formation. The presence of mud drapes and mud couplets suggest that these deposits were influenced by tides. These deposits dominate the lower half of the Grimsby. Deposition continued with a change from these subtidal channel complexes to laterally migrating, discrete, shallow tidal channels and mud flats. These were in turn overlain by the non-marine deposits of the Thorold Formation. Grimsby - Thorold deposition ended with a major transgression replacing siliciclastic deposition with primarily carbonate deposition. Sediment was sourced from the east and southeast and associated with a continuation of the Taconic Orogeny into the Early Silurian. The fluvial head of the estuary prograded from a shoreline that was located in western New York and western Pennsylvania running NNE-SSW and then turning NW-SE and paralleling the present day Lake Erie shoreline. iii The facies attributed to the Grimsby - Thorold formations can be ascribed to the three zones within the tripartite zonation suggested by Dalrymple et ale (1992) for estuaries, that is, a marine-dominated facies, a mixed energy facies, and a facies that is dominated by fluvial processes. Also, sediments within the Grimsby - Thorold are commonly fining upwards sequences which are common in estuarine settings whereas deltaic deposits are normally composed of coarsening upwards sequences in a vertical wedge shape with coarser material near the head. The only coarsening observed was in the Thorold Formation and attributed to non-marine deposition by palynological evidence. The presence of a lag deposit at the base of the sediments of the Grimsby Thorold formations suggests that they were incised into the Cabot Head Formation. Further, the thickness of Early Silurian sediments located between the top of the Queenston Formation, where Early Silurian sedimentation began, to the top of the Reynales - Irondequoit formation are constant whether the Grimsby - Thorold formations are present or not. Also, cross-sections using a sand body located in the Cabot Head Formation for correlation further imply that the Grimsby Formation has been incised into the previous deposits of the Cabot Head.
Resumo:
Three cores from the Kearl Lake Oil Sands area within the Athabasca deposit of northeastern Alberta have been analyzed to understand the thermal history of the McMurray and Clearwater formations of the Lower Cretaceous Mannville Group. The approach involves the integration of vitrinite reflectance (VR), Rock-Eval pyrolysis, fluorescence microscopy, and palynology. Mean VR varies between 0.21 and 0.43% Ro and indicates thermally immature levels equivalent to the rank of lignite to sub-bituminous coal. Although differing lithologies have influenced VR to some extent (i.e., coals and bitumen-rich zones), groundwater influence and oxidation seem not to have measurably altered YR. Rock-Eval analysis points to Type III/IV kerogen, and samples rich in amorphous organic matter (ADM) show little to no fluorescence characteristics, implying a terrestrial source of origin. Palynology reveals the presence of some delicate macerals but lack of fluorescence and abundant ADM suggests some degradation and partial oxidation of the samples.
Resumo:
The time course of lake recovery after a reduction in external loading of nutrients is often controlled by conditions in the sediment. Remediation of eutrophication is hindered by the presence of legacy organic carbon deposits, that exert a demand on the terminal electron acceptors of the lake and contribute to problems such as internal nutrient recycling, absence of sediment macrofauna, and flux of toxic metal species into the water column. Being able to quantify the timing of a lake’s response requires determination of the magnitude and lability, i.e., the susceptibility to biodegradation, of the organic carbon within the legacy deposit. This characterization is problematic for organic carbon in sediments because of the presence of different fractions of carbon, which vary from highly labile to refractory. The lability of carbon under varied conditions was tested with a bioassay approach. It was found that the majority of the organic material found in the sediments is conditionally-labile, where mineralization potential is dependent on prevailing conditions. High labilities were noted under oxygenated conditions and a favorable temperature of 30 °C. Lability decreased when oxygen was removed, and was further reduced when the temperature was dropped to the hypolimnetic average of 8° C . These results indicate that reversible preservation mechanisms exist in the sediment, and are able to protect otherwise labile material from being mineralized under in situ conditions. The concept of an active sediment layer, a region in the sediments in which diagenetic reactions occur (with nothing occurring below it), was examined through three lines of evidence. Initially, porewater profiles of oxygen, nitrate, sulfate/total sulfide, ETSA (Electron Transport System Activity- the activity of oxygen, nitrate, iron/manganese, and sulfate), and methane were considered. It was found through examination of the porewater profiles that the edge of diagenesis occurred around 15-20 cm. Secondly, historical and contemporary TOC profiles were compared to find the point at which the profiles were coincident, indicating the depth at which no change has occurred over the (13 year) interval between core collections. This analysis suggested that no diagenesis has occurred in Onondaga Lake sediment below a depth of 15 cm. Finally, the time to 99% mineralization, the t99, was viewed by using a literature estimate of the kinetic rate constant for diagenesis. A t99 of 34 years, or approximately 30 cm of sediment depth, resulted for the slowly decaying carbon fraction. Based on these three lines of evidence , an active sediment layer of 15-20 cm is proposed for Onondaga Lake, corresponding to a time since deposition of 15-20 years. While a large legacy deposit of conditionally-labile organic material remains in the sediments of Onondaga Lake, it becomes clear that preservation, mechanisms that act to shield labile organic carbon from being degraded, protects this material from being mineralized and exerting a demand on the terminal electron acceptors of the lake. This has major implications for management of the lake, as it defines the time course of lake recovery following a reduction in nutrient loading.