976 resultados para lacustrine deposit
Resumo:
This paper selected the Taklamakan Desert and the Badain Jaran Desert as the research areas, tested the carbonate content of surface-sand samples of dunes using Eijkelkamp carbonate goniophotometer, and analyzed the spatial-distribution characteristics of carbonate and estimated the carbonate-stock and secondary carbonate-stock in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Desert. In addition, the paper test XRD, SEM, TDA, stable carbon isotope and radioactive strontium isotope of lacustrine deposits in the Taklamakan Desert and carbonates, such as kunkar, root canal, lacustrine deposits, sinter and calcrete, in the Badain Jaran Desert. Resting on the achievements by our predecessors, it analyzed the mineral-composition differences of the carbonates, calculated the contents of secondary carbonate and, furthermore, evaluated their potential of sequestration of CO2 in the atmosphere. The overall goal of this study was to increase our understanding of soil carbonate in the context of carbon sequestration in the arid region in China. That is, to advance our understanding about whether or not secondary carbonate in desert is a sink for atmospheric CO2. The following viewpoints were obtained: 1 Carbonate contents of surface-sand samples decend from the south to the north of the Taklamakan Desert. The minimum lies in the south and the maxmum in the mid. Carbonate content of surface-sand of megadunes in the Badain Jaran Desert has low value generally in the dune-crest and the base of slope, and large value in the mid. The average of Carbonate contents of all sorts of collected samples in the same area of the Taklamakan Desert has small diffetences. The average is about 9%. 2 Using carbonate contents as key parameters, calculate the carbon-stock of carbonates in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Deser.They are 1.13Pg and 0.19 Pg respectively. There are 0.53Pg and 0.088Pg carbon-stock of secondary-carbonates in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Desert. 3 Through testing data from XRD (X-ray diffraction)and TAD ( Thermal Analysis Data), the most significant conclusion derived from is that the main mineral ingredient is calcite in different carbonate substances in arid regions, From the SEM(Scanning electron microscopy ) images, can obtains the information about the micro environment of different carbonate forms in which they can grow. 4 Selected gas by termal cracking and traditional phosphoric acid method, their δ13C show that δ13C is a good parameter to indicate the micro environment in which different secondary carbonate forms. From the δ13C of the same type samples, if the redeposit degree is hard, theδ13C is light, the redeposit degree is weak, the δ13C is heave. and the δ13C of the different type samples, δ13C is mainly controlled by the micro environment in which secondary formed. if the procedure is characterized by redeposit and dissolve of marine facies carbonate, δ13C is heavy, it is characterized by CO2 which produced by plant respiration,δ13C is light. 5 From the δ13C of lacustrine deposit in the different grain size, there exsit certain differences in their micro environment and secondary degree among different grain size in the same grade. 6 The secondary carbonate content of lacustrine deposits in Taklimakan Desert is 47.26%. And those of root canal, sinter, calcrete, kunkar, lacustrine deposit and surface sand in Badain Jaran Desert are 91.74%, 78.46%, 76.26%, 87.87%, 85.37%and 46.49%, respectively. Of different grain size samples, the secondary carbonate contents of coarse fraction (20-63μm), sub-coarse fraction (5-20μm) and fine fraction (<5μm) are 80.10%, 47.2%and 50.07%, respectively. 7 There is no obvious relevance betweenδ13C of secondary carbonate and the content of secondary carbonate,theδ13C of secondary carbonate mainly reflects the parameters of secondary process, the content of secondary carbonate reflects difference of secondary degree.. 8 Silicates potentially supply 3.4 pencent calcium source during forming process of lacustrine deposits in Taklimakan Desert. If calcium source is mainly supplied by goundwater, it can be calculated that about 5.18 %, 6.13%, 5.68%, 5.64 % and 6.82% silicates supply calcium source respectively for root canal, kunkar, lacustrine deposit, calcrete and sinter, during the forming process of different kinds of carbonates in Badain Jaran Desert.
Resumo:
The Nihewan Basin is a key area for research into human occupation at high northern latitudes in northeast Asia after the initial expansion of early humans out of Africa. Well-developed late Cenozoic lacustrine deposit sequence in this basin offers a unique opportunity to address this issue. In this thesis, detailed magnetostratigraphic investigation coupled with mineral magnetism was conducted on the Donggutuo and Cenjiawan sections in the eastern basin, where lacustrine deposits sequences containing the Donggutuo, Maliang and Cenjiawan Paleolithic sites are well developed. The sequences are mainly composed of grayish-white clays, grayish-green clayey silts, grayish-yellow silts and fine-grained brown sands, which have recorded reliable polarity variations of geomagnetic field.Characteristics of the anisotropy of magnetic susceptibility show that the sediments have preserved typical original magnetic fabric for sediments, indicating that the strata were developed in a low-energy lake environment and were never perturbed by tectonic stress since deposition. High-temperature magnetic susceptibility measurements (x-T) of representative specimens and demagnetization experiments indicate that the dominant magnetic mineral and remanent carrier at the two sections is magnetite. In addition, hematite and possibly minor maghemite exists in some portions of the sequences. The majority of the samples have relatively simple demagnetization behaviors. After removal of soft magnetic components, the stable characteristic remanent magnetizations (ChRMs) are isolated, which can represent the original remanences.The Donggutuo section mainly records the Brunhes chron, the Matuyama chron and the Jaramillo subchron. The Maliang stone artifact layer occurs just below the Brunhes/Matuyama boundary; and the Donggutuo artifact layer, just below the Jaramillo onset. Accordingly, the Maliang and Donggutuo sites can be dated at about 0.78 Ma and 1.1 Ma, respectively. The Cenjiawan section has recorded a portion of the Matuyama chron. After correlations with the magnetic polarity sequence of the Majuangou section adjacent to this section, the Cenjiawan stone artifact layer is determined below the Jaramillo onset, with an estimated age of 1.1 Ma.To establish the magnetic stratigraphy framework for the lacustrine sediments in the eastern Nihewan Basin, this thesis draws on the magnetic polarity sequences of the Donggutuo and Cenjiawan sections as well as previously obtained results from the Majuangou, Haojiatai, Xiaochangliang and Donggou sections for magnetostratigraphic correlations. The accumulation of the lacustrine sequences at the east margin of the basin commenced from about 2.0 Ma. These sequences record not only the coarse magnetostratigraphy of the Brunhes normal chron and the middle to late Matuyama reverse chron (that is, the Jaramillo and Olduvai subchrons) but also some of the fine structure (that is, the Kamikatsura, Santa Rosa, Punaruu and Cobb Mountain geomagnetic events). The development of the Nihewan paleolake experienced at least twice large expansion periods, split by a large-scale shrinking event in the middle period of the paleolake development. The accumulation of the lacustrine strata was controlled by fault activities.After temporal control for the Donggutuo, Maliang and Cenjiawan Paleolithic sites were established, the three sites along with other well-dated Paleolithic/hominin sites of the Early Pleistocene in North China were combined to construct a chronological sequence of early human occupation in northeastern Asia. Furthermore, after incorporation of paleoclimate changes retrieved from Chinese loess/paleosol sequences and marine sediments, it could be possibly proposed that human groups of the Early Pleistocene in North China might have survived repeated warm/humid interglacials and cold/dry glacials, which were paced by earth orbital variations of the Eastern paleomonsoon.
Resumo:
Rhythmite samples from Varvite Quarry and Park of Itu (SP), and well cores from Rafard (SP), were analyzed by optical microscopy to describe the petrographic characteristics of their light-colored (siltstone) and dark-colored (shale) laminae. The light-colored ones are essentially siltstones, commonly with traces of sands; the mineralogical composition is mainly quartz, with traces of feldspar and scarce mica; quartz or calcite cementation occurs in variable intensity, the first one being more intense in the Itu rhythmites; parallel laminations, internally normal graded or massive are the most common sedimentary structures in these rocks; bioturbations and dropstones are commonly observed in Itu rhythmites; contacts between siltstone laminae, and siltstone beds and shale laminae are commonly non-erosive and sharp. Considering this study and the macroscopic description of these rhythmites it was possible to clarify many questions about their composition, as the grain-size of the light-colored beds composed by silt with subordinate dropped sand, and the inappropriate use of the term varvite to the most of the Itu rhythmites. It was also important to reinforce their proglacial lacustrine origin, with random freezing of lacustrine surface water, and only sporadic ice-contact.
Resumo:
The interior layered deposit (ILD) in Ganges Chasma, Valles Marineris, is a 4.25 km high mound that extends approximately 110 km from west to east. The deposition, deformation, and erosion history of the Ganges ILD records aids in identifying the processes that formed and shaped the Chasma. To interpret structural and geomorphic processes acting on the ILD, multiple layer attitudes and layer thickness transects were conducted on the Ganges ILD. Mineralogical data was analyzed to determine correlations between materials and landforms. Layer thickness measurements indicate that the majority of layers are between 0.5 m and 4 m throughout the ILD. Three major benches dominate the Ganges ILD. Layer thicknesses increase at the ILD benches, suggesting that the benches are formed from the gradual thickening of layers. This indicates that the benches are depositional features draping over basement topography. Layer attitudes indicate overall shallow dips generally confined to a North-South direction that locally appear to follow bench topography. Layering is disrupted on a scale of 40 m to 150 m in 12 separate locations throughout the ILD. In all locations, underlying layering is disturbed by overlying folded layers in a trough-like geometry. These features are interpreted to have formed as submarine channels in a lacustrine setting, subsequently infilled by sediments. Subsequently, the channels were eroded to the present topography, resulting in the thin, curved layering observed. Data cannot conclusively support one ILD formation hypothesis, but does indicate that the Ganges ILD postdates Chasma formation. The presence of water altered minerals, consistently thin layering, and layer orientations provide strong evidence that the ILD formed in a lacustrine setting.
Resumo:
The late Miocene Farallon Negro volcanics, comprising basaltic to rhyodacitic volcano-sedimentary rocks, host the Bajo de la Alumbrera porphyry copper-gold deposit in northwest Argentina. Early studies of the geology of the district have underpinned the general model for porphyry ore deposits where hydrothermal alteration and mineralization develop in and around porphyritic intrusions emplaced at shallow depths (2.5-3.5 km) into stratovolcanic assemblages. The Farallon Negro succession is dominated by thick sequences of volcano-sedimentary breccias, with lavas forming a minor component volumetrically. These volcaniclastic rocks conformably overlie crystalline basement-derived sedimentary rocks deposited in a developing foreland basin southeast of the Puna-Altiplano plateau. Within the Farallon Negro volcanics, volcanogenic accumulations evolved from early mafic to intermediate and silicic compositions. The younger and more silicic rocks are demonstrably coeval and comagmatic with the earliest group of mineralized porphyritic intrusions at Bajo de la Alumbrera. Our analysis of the volcanic stratigraphy and facies architecture of the Farallon Negro volcanics indicates that volcanic eruptions evolved from effusive to mixed effusive and explosive styles, as magma compositions changed to more intermediate and silicic compositions. Air early phase of mafic to intermediate voleanism was characterized by small synsedimentary intrusions with peperitic contacts, and lesser lava units scattered widely throughout the district, and interbedded with thick and extensive successions of coarse-grained sedimentary breccias. These sedimentary breccias formed from numerous debris- and hyperconcentrated flow events. A later phase of silicic volcanism included both effusive eruptions, forming several areally restricted lavas, and explosive eruptions, producing more widely dispersed (up to 5 kin) tuff units, some tip to 30-m thickness in proximal sections. Four key features of the volcanic stratigraphy suggest that the Farallon Negro volcanics need not simply record the construction of a large steep-sided polygenetic stratovolcano: (1) sheetlike, laterally continuous debris-flow and other coarse-grained sedimentary deposits are dominant, particularly in the lower sections; (2) mafic-intermediate composition lavas are volumetrically minor; (3) peperites are present throughout the sequence; and (4) fine-grained lacustrine sandstone-siltstone sequences occur in areas previously thought to be proximal to the summit region of the stratovolcano. Instead, the nature, distribution, and geometry of volcanic and volcaniclastic facies suggest that volcanism occurred as a relatively low relief, multiple-vent volcanic complex at the eastern edge of a broad, > 200-km-wide late Miocene volcanic belt and oil ail active foreland sedimentary basin to the Puna-Altiplano. Volcanism that occurred synchronously with the earliest stages of porphyry-related mineralization at Bajo de la Alumbrera apparently developed in an alluvial to ring plain setting that was distal to larger volcanic edifices.
Resumo:
In Theodore v Mistford Pty Ltd [2005] HCA 45, the High Court considered certain principles governing the creation of an equitable mortgage by the deposit of a title deed as first developed by the English courts of equity with respect to old system conveyancing. The decision will be of interest to Queensland practitioners as it concerned the application of these equitable principles to Torrens land regulated by the provisions of the Land Title Act 1994 (Qld) and, in particular, the operation of s 75 of the Land Title Act 1994 (Qld) which provides: (i) An equitable mortgage of a lot may be created by leaving a certificate of title with the mortgagee (ii) Subsection (1) does not affect the ways in which an equitable mortgage may be created.
Resumo:
Before even thinking of approaching charitable trusts for funding, consideration needs to be given to a whole range of issues. As with many endeavours, preparation paves the way for success...
Resumo:
Fossils and sediments preserved in caves are an excellent source of information for investigating impacts of past environmental changes on biodiversity. Until recently studies have relied on morphology-based palaeontological approaches, but recent advances in molecular analytical methods offer excellent potential for extracting a greater array of biological information from these sites. This study presents a thorough assessment of DNA preservation from late Pleistocene–Holocene vertebrate fossils and sediments from Kelly Hill Cave Kangaroo Island, South Australia. Using a combination of extraction techniques and sequencing technologies, ancient DNA was characterised from over 70 bones and 20 sediment samples from 15 stratigraphic layers ranging in age from >20 ka to ∼6.8 ka. A combination of primers targeting marsupial and placental mammals, reptiles and two universal plant primers were used to reveal genetic biodiversity for comparison with the mainland and with the morphological fossil record for Kelly Hill Cave. We demonstrate that Kelly Hill Cave has excellent long-term DNA preservation, back to at least 20 ka. This contrasts with the majority of Australian cave sites thus far explored for ancient DNA preservation, and highlights the great promise Kangaroo Island caves hold for yielding the hitherto-elusive DNA of extinct Australian Pleistocene species.
Resumo:
The multianion mineral gartrellite PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2 has been studied by a combination of Raman and infrared spectroscopy. The molecular structure of gartrellite is assessed. Gartrellite is one of the tsumcorite mineral group based upon arsenate and/or sulphate anions. Crystal symmetry is either triclinic in the case of an ordered occupation of two cationic sites, triclinic due to ordering of the H bonds in the case of species with two water molecules per formula unit, or monoclinic in the other cases. Characteristic Raman spectra of the mineral gartrellite enable the assignment of the bands to specific vibrational modes. These spectra are related to the structure of gartrellite. The position of the hydroxyl and water stretching vibrations are related to the strength of the hydrogen bond formed between the OH unit and the AsO3/4 anion.
Resumo:
Carbonatites are known to contain the highest concentrations of rare-earth elements (REE) among all igneous rocks. The REE distribution of carbonatites is commonly believed to be controlled by that of the rock forming Ca minerals (i.e., calcite, dolomite, and ankerite) and apatite because of their high modal content and tolerance for the substitution of Ca by light REE (LREE). Contrary to this conjecture, calcite from the Miaoya carbonatite (China), analyzed in situ by laser-ablation inductively-coupled-plasma mass-spectrometry, is characterized by low REE contents (100–260 ppm) and relatively !at chondrite-normalized REE distribution patterns [average (La/Yb)CN=1.6]. The carbonatite contains abundant REE-rich minerals, including monazite and !uorapatite, both precipitated earlier than the REE-poor calcite, and REE-fluorocarbonates that postdated the calcite. Hydrothermal REE-bearing !uorite and barite veins are not observed at Miaoya. The textural and analytical evidence indicates that the initially high concentrations of REE and P in the carbonatitic magma facilitated early precipitation of REE-rich phosphates. Subsequent crystallization of REE-poor calcite led to enrichment of the residual liquid in REE, particularly LREE. This implies that REE are generally incompatible with respect to calcite and the calcite/melt partition coefficients for heavy REE (HREE) are significantly greater than those for LREE. Precipitation of REE-fluorocarbonates late in the evolutionary history resulted in depletion of the residual liquid in LREE, as manifested by the development of HREE-enriched late-stage calcite [(La/Yb)CN=0.7] in syenites associated with the carbonatite. The observed variations of REE distribution between calcite and whole rocks are interpreted to arise from multistage fractional crystallization (phosphates!calcite!REE-!uorocarbonates) from an initially REE-rich carbonatitic liquid.
Resumo:
The Archean Hollandaire volcanogenic massive sulfide deposit is a felsic–siliciclastic VMS deposit located in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton, Western Australia. It is hosted in a succession of turbidites, mudstones and coherent rhyodacite sills and has been metamorphosed to upper greenschist/lower amphibolite facies and includes a pervasive S1 deformational fabric. The coherent rhyodacitic sills are interpreted as syndepositional based on geochemical similarities with well-known VMS-associated felsic rocks and similar foliations to the metasediments. We offer several explanations for the absence of textural evidence (e.g. breccias) for syn-depositional origins: 1) the subaqueous sediments were dehydrated by long-lived magmatism such that no pore-water remained to drive quench fragmentation; 2) pore-space occlusion by burial and/or, 3) alteration overprinting and obscuring of primary breccias at contact margins. Mineralisation occurs by sub-seafloor replacement of original host rocks in two ore bodies, Hollandaire Main (~125 x >500 m and ~8 m thick) and Hollandaire West (~100 x 470 m and ~5 m thick), and occurs in three main textural styles, massive sulfides, which are exclusively hosted in turbidites and mudstones, and stringer and disseminated sulfides, which are also hosted in coherent rhyodacite. Most sulfides have textures consistent with remobilisation and recrystallisation. Hydrothermal metamorphism has altered the hangingwall and footwall to similar degrees, with significant gains in Mg, Mn and K and losses in Na, Ca and Sr. Garnet and staurolite porphyryoblasts also exhibit a footprint around mineralisation, extending up to 30 m both above and below the ore zone. High precision thermal ionisation mass spectrometry of zircons extracted from the coherent rhyodacite yield an age of 2759.5 ± 0.9 Ma, which along with geochemical comparisons, places the succession within the 2760–2735 Ma Greensleeves Formation of the Polelle Group of the Murchison Supergroup. Geochemical and geochronological evidence link the coherent rhyodacite sills to the Peter Well Granodiorite pluton ~2 km to the W, which acted as the heat engine driving hydrothermal circulation during VMS mineralisation. This study highlights the importance of both: detailed physical volcanological studies from which an accurate assessment of timing relationships, particularly the possibility of intrusions dismembering ore horizons, can be made; and identifying synvolcanic plutons and other similar suites, for VMS exploration targets in the Youanmi Terrane and worldwide.
Resumo:
The decision of Henry J in Majet v Goggin and Miller (as joint and several trustees of bankrupt estate of Brett-Hall) [2015] QSC 38 dealt with the fate of a deposit that was paid under a real estate contract that did not complete in unusual circumstances.
Resumo:
The Jericho kimberlite (173.1. ±. 1.3. Ma) is a small (~. 130. ×. 70. m), multi-vent system that preserves products from deep (>. 1. km?) portions of kimberlite vents. Pit mapping, drill core examination, petrographic study, image analysis of olivine crystals (grain size distributions and shape studies), and compositional and mineralogical studies, are used to reconstruct processes from near-surface magma ascent to kimberlite emplacement and alteration. The Jericho kimberlite formed by multiple eruptions through an Archean granodiorite batholith that was overlain by mid-Devonian limestones ~. 1. km in thickness. Kimberlite magma ascended through granodiorite basement by dyke propagation but ascended through limestone, at least in part, by locally brecciating the host rocks. After the first explosive breakthrough to surface, vent deepening and widening occurred by the erosive forces of the waxing phase of the eruption, by gravitationally induced failures as portions of the vent margins slid into the vent and, in the deeper portions of the vent (>. 1. km), by scaling, as thin slabs burst from the walls into the vent. At currently exposed levels, coherent kimberlite (CK) dykes (<. 40. cm thick) are found to the north and south of the vent complex and represent the earliest preserved in-situ products of Jericho magmatism. Timing of CK emplacement on the eastern side of the vent complex is unclear; some thick CK (15-20. m) may have been emplaced after the central vent was formed. Explosive eruptive products are preserved in four partially overlapping vents that are roughly aligned along strike with the coherent kimberlite dyke. The volcaniclastic kimberlite (VK) facies are massive and poorly sorted, with matrix- to clast-supported textures. The VK facies fragmented by dry, volatile-driven processes and were emplaced by eruption column collapse back into the volcanic vents. The first explosive products, poorly preserved because of partial destruction by later eruptions, are found in the central-east vent and were formed by eruption column collapse after the vent was largely cleared of country rock debris. The next active vent was either the north or south vent. Collapse of the eruption column, linked to a vent widening episode, resulted in coeval avalanching of pipe margin walls into the north vent, forming interstratified lenses of country rock-rich boulder breccias in finer-grained volcaniclastic kimberlite. South vent kimberlite has similar characteristics to kimberlite of the north vent and likely formed by similar processes. The final eruptive phase formed olivine-rich and moderately sorted deposits of the central vent. Better sorting is attributed to recycling of kimberlite debris by multiple eruptions through the unconsolidated volcaniclastic pile and associated collapse events. Post-emplacement alteration varies in intensity, but in all cases, has overprinted the primary groundmass and matrix, in CK and VK, respectively. Erosion has since removed all limestone cover.