152 resultados para lactobacilli


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aims: The aim of this study was to investigate the colonization of mutans streptococci (MS) and lactobacilli (LB) in predentate children from the neonatal period to 7 months. Methods: A total of 957 mother-and-child pairs were recruited from birth and followed up at 7 months. The 283 children who did not have erupted teeth at the second visit were included in the study. Oral mucosal swabs were taken, and the presence of MS and LB was determined using a commercial microbiological culture kit. Results: At mean ages of 34 days and 7 months, 9 and 11% of the infants, respectively, showed the presence of MS. In contrast, LB presence increased from 24 to 47% (p < 0.0001). MS presence in the neonatal period was associated with maternal MS counts of >105 CFU/ml (p = 0.05), while LB presence was associated with natural birth (p = 0.03) and maternal LB presence (p = 0.02). At 7 months, MS presence was associated with maternal MS counts (p = 0.02) and LB counts of >105 CFU/ml (p = 0.007). Additional predictors of MS presence at 7 months were a child’s MS counts of >105 CFU/ml at the neonatal visit (p = 0.019) and nighttime bottle feeding (p = 0.024). LB presence at 7 months was associated with maternal LB (p < 0.001) and MS presence (p = 0.02). Conclusions: MS and LB can be detected by culture in the oral cavity as early as 34 days after birth. Their infection rates increase to 11 and 47%, respectively, by the time the children reach the end of the predentate stage of oral development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catabolic flexibility affords a bacterium the ability to utilise different sugar sources as carbon for energy. This is important for commensal lactobacilli like Lactobacillus ruminis which can be exposed to a variety of carbohydrates in vivo. However, little is known about the fermentation capabilities, metabolic pathways, genetic diversity or potential survival mechanisms used by L. ruminis in vivo. A combination of in vitro and in silico techniques was used to identify the catabolic pathways of L. ruminis. I also compared 16 L. ruminis strains using a panel of biochemical and survival assays, genetically, whole genome sequencing and RNA sequencing. Multi locus sequence typing revealed that strains clustered according to their host sources. Transcriptome analysis by RNAseq of two motile strains under three growth conditions, including swarming, identified the up-regulation of carbohydrate-related genes under swarming conditions. This suggests that carbohydrate flexibility may have an uncharacterised role in L. ruminis swarming. Following on from the assessment of L. ruminis catabolic flexibility, the porcine diet was supplemented with galactooligosaccharides or L. ruminis ATCC 25644 plus galactooligosaccharides. Supplementation of the porcine diet with galactooligosaccharide had no effect on microbiota diversity. In contrast, the L. ruminis plus galactooligosaccharide treatment significantly reduced the microbiota diversity. Diet is a major factor that affects the diversity of the gut microbiota. In order to get a more thorough understanding of diet and gut health in animals such as racehorses and domesticated herbivores, I determined the core microbiota of animals consuming different feeds. Interestingly, the gut microbiota diversity correlated with the host phylogeny of the animal. The genome of Lactobacillus equi (2.19 Mb), isolated from a healthy Irish thoroughbred was also sequenced and annotated, and comprised 2,263 predicted genes. The large repertoire of predicted carbohydrate-related genes may offer L. equi an advantage in the complex and harsh hindgut environment. In summary, this thesis uses functional genomics to assess the effect that carbohydrates have on commensal lactobacilli and the microbiota as a whole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dipeptidyl peptidase 4 (DPP-4) enzymatically inactivates incretin hormones, and DPP-4 inhibitor drugs are clinically approved therapies for type 2 diabetes. The primary substrates of DPP-4 are produced in the intestinal lining and we therefore investigated whether lactobacilli colonizing the gut can inhibit this enzyme. Fifteen Lactobacillus strains (Lb 1-15) from human infant faecal samples were isolated, identified, extracted and screened for inhibitory activity against DPP-4. Activity was compared against Lactobacillus reference strains (Ref 1-7), a Gram positive control (Ctrl 1) and two Gram negative controls (Ctrl 2-3). A range of DPP-4 inhibitory activity was observed (10-32%; P<0.05-0.001). Strains of L. fabifermentans (25%), L. plantarum (12-24%) and L. fermentum (14%) had significant inhibitory activity. However, we also noted that E. coli (Ctrl 2) and S. Typhimurium (Ctrl 3) had the greatest inhibitory activity (30-32%). Contrastingly, some isolates (Lb 12-15) and reference cultures (Ref 1-4) instead of inhibiting DPP-4 actually enhanced it, perhaps indicating the presence of X-prolyl-dipeptidyl-amino-peptidase (PepX). This provides a future rationale for using probiotic bacteria or their components for management of type 2 diabetes via DPP-4 inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the effects of the medium and cryoprotective agents used on the growth and survival of Lactobacillus plantarum and Lactobacillus rhamnosus GG during freeze drying. A complex medium was developed consisting primarily of glucose, yeast extract and vegetable-derived peptone. Trehalose, sucrose and sorbitol were examined for their ability to protect the cells during freeze drying. Using standardized amount of cells and the optimized freeze drying media, the effect of the growth medium on cell survival during freeze drying was investigated. The results showed that glucose and yeast extract were the most important growth factors, while sucrose offered better protection than trehalose and sorbitol during freeze drying. When the cells were grown under carbon limiting conditions, their survival during freeze drying was significantly decreased. A clear relationship was observed between cell growth and the ability of the cells to survive during the freeze drying process. The survival of probiotic strains during freeze drying was shown to be dependent on the cryoprotectant used and the growth medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The study of peptidase, esterase and caseinolytic activity of Lactobacillus paracasei subsp. paracasei, Debaryomyces hansenii and Sacchromyces cerevisiae isolates from Feta cheese brine. Methods and Results: Cell-free extracts from four strains of Lact. paracasei subsp. paracasei, four strains of D. hansenii and three strains of S. cerevisiae, isolated from Feta cheese brine were tested for their proteolytic and esterase enzyme activities. Lactobacillus paracasei subsp. paracasei strains had intracellular aminopeptidase, dipeptidyl aminopeptidase, dipeptidase, endopeptidase and carboxypeptidase activities. Esterases were detected in three of four strains of lactobacilli and their activities were smaller with higher molecular weight fatty acids. The strains of yeasts did not exhibit endopeptidase as well as dipeptidase activities except on Pro-Leu. Their intracellular proteolytic activity was higher than that of lactobacilli. Esterases from yeasts preferentially degraded short chain fatty acids. Lactobacilli degraded preferentially beta-casein. Caseinolytic activity of yeasts was higher than that of lactobacilli. Conclusions: The results suggest that Lact. paracasei subsp. paracasei and yeasts may contribute to the development of flavour in Feta cheese. Significance and impact of the Study: Selected strains could be used as adjunct starters to make high quality Feta cheese.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avian intestinal spirochetosis (AIS) results from the colonization of the ceca and colorectum of poultry by pathogenic Brachyspira species. The number of cases of AIS has increased since the 2006 European Union ban on the use of antibiotic growth promoters, which, together with emerging antimicrobial resistance in Brachyspira, has driven renewed interest in alternative intervention strategies. Probiotics have been reported as protecting livestock against infection with common enteric pathogens, and here we investigate which aspects of the biology of Brachyspira they antagonize in order to identify possible interventions against AIS. The cell-free supernatants (CFS) of two Lactobacillus strains, Lactobacillus reuteri LM1 and Lactobacillus salivarius LM2, suppressed the growth of Brachyspira pilosicoli B2904 in a pH-dependent manner. In in vitro adherence and invasion assays with HT29-16E three-dimensional (3D) cells and in a novel avian cecal in vitro organ culture (IVOC) model, the adherence and invasion of B. pilosicoli in epithelial cells were reduced significantly by the presence of lactobacilli (P < 0.001). In addition, live and heat-inactivated lactobacilli inhibited the motility of B. pilosicoli, and electron microscopic observations indicated that contact between the lactobacilli and Brachyspira was crucial in inhibiting both adherence and motility. These data suggest that motility is essential for B. pilosicoli to adhere to and invade the gut epithelium and that any interference of motility may be a useful tool for the development of control strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to investigate the effect of probiotic immobilization onto wheat grains, both wet and freeze dried, on the adhesion properties of the probiotic cells and make comparisons with wet and freeze dried free cells. Lactobacillus casei ATCC 393 and Lactobacillus plantarum NCIMB 8826 were used as model probiotic strains. The results showed satisfactory adhesion ability of free cells to a monolayer of Caco-2 cells (> 1000 CFU/100 Caco-2 cells for wet cells). Cell immobilization resulted in a significant decrease in adhesion, for both wet and freeze dried formulations, most likely because immobilized cells did not have direct access to the Caco-2 cells, but it still remained in adequate levels (> 100 CFU/100 Caco-2 cells for wet cells). No clear correlation could be observed between cell adhesion and the hydrophobicity of the bacterial cells, measured by the hexadecane adhesion assay. Most notably, immobilization enhanced the monolayer integrity of Caco-2 cells, demonstrated by a more than 2-fold increase in transepithelial electrical resistance (TEER) compared to free cells. SEM micrographs ascertained the adhesion of both immobilized and free cells to the brush border microvilli. Finally, the impact of the food matrix on the adhesion properties of probiotic bacteria and on the design of novel functional products is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactobacillus plantarum and subspecies of Lactobacillus casei were isolated from good quality mature Cheddar cheese and characterized with respect to metabolic functions that would allow their use in cheesemaking. In this way microbiological control of the maturation process with particular emphasis on protein catabolism was achieved. The lactobacilli isolated were selected for low growth rates (and acid production) in milk, and low proteinase activity to allow for their addition in high numbers to cheesemilk together with the normal starter flora (group N streptococci). The growth and acid production of the starter bacteria were unaffected by the presence of the lactobacilli during cheese manufacture and it was found that the added lactobacilli were able to grow and function under the conditions prevalent in Cheddar cheese during maturation. It was also demonstrated that the lactobacilli could be grown in an artificial medium to high numbers under controlled conditions and could be harvested for the preparation of cell concentrates, a necessary characteristic for commercialization. The lactobacilli also metabolized citrate, a potential problem in cheese maturation associated with C02 production but this did not adversely affect the maturation process under the conditions used. Compared to the group N streptococci the non-starter lactobacilli possessed a proteinase system that had a higher temperature optimum and was less affected by heat and sodium chloride. They also possessed a more active peptidase system although both the lactobacilli and the starter organisms possessed a similar range of peptidases. Non-starter lactobacilli were added to normal cheese and cheese made with proteinase negative starter. The added organisms did not adversely affect manufacturing parameters and did not metabolize citrate or lead to the formation of biogenic amines. However protein catabolism rates, particularly with respect to peptide degradation, were increased, as was flavour development and intensity. It was observed that the body and texture of the cheeses was unaffected by the treatment. By controlling both the starter and non-starter microflora in the cheeses a practical system for favourably influencing cheese maturation was possible. The investigation has demonstrated that carefully selected and characterized non-starter lactobacilli can be incorporated into Cheddar cheese manufacture in order to influence flavour development during maturation. Moreover the organisms can be added to the vat stage of manufacture without causing problems to the manufacturing process. This approach is a simple cost effective means of improving the cost of Cheddar cheese production and provides an unique opportunity to improve and control quality of all Cheddar cheese produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-envelope proteinases (CEPs) are a class of proteolytic enzymes produced by lactic acid bacteria and have several industrially relevant applications. However, soluble CEPs are economically unfavorable for such applications due to their poor stability and lack of reusability. In a quest to prepare stable biocatalysts with improved performance, CEP from Lactobacillus delbrueckii subsp. lactis 313 and trypsin (as a model enzyme) were immobilized onto nonwoven polyester fabrics in a three-step protocol including ethylenediamine activation and glutaraldehyde crosslinking. Immobilization gave protein loading yields of 21.9% (CEP) and 67.7% (trypsin) while residual activity yields were 85.6% (CEP) and 4.1% (trypsin). The activity of the immobilized enzymes was dependent on pH, but was retained at elevated temperatures (40-70°C). An increase in Km values was observed for both enzymes after immobilization. After 70 days of storage, the immobilized CEP retained ca. 62% and 96% of initial activity when the samples were stored in a lyophilized form at -20°C or in a buffer at 4°C, respectively. Both immobilized CEP and trypsin were able to hydrolyze proteins such as casein, skimmed milk proteins and bovine serum albumin. This immobilization protocol can be used to prepare immobilized biocatalyst for various protein degradation processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)