928 resultados para lactate threshold


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accumulated oxygen deficit (AOD) method assumes a linear VO<sub>2</sub>-power relationship for exercise intensities increasing from below the lactate threshold (BLT) to above the lactate threshold (ALT). Factors that were likely to effect the linearity of the VO<sub>2</sub>-power regression and the precision of the estimated total energy demand (ETED) were investigated. These included the slow component of VO<sub>2</sub> kinetics (SC), a forced resting y-intercept and exercise intensities BLT and ALT. Criteria for linearity and precision included the Pearson correlation coefficient (PCC) of the VO<sub>2</sub>-power relationship, the length of the 95% confidence interval (95% CI) of the ETED and the standard error of the predicted value (SEP), respectively. Eight trained male and one trained female triathlete completed the required cycling tests to establish the AOD when pedalling at 80 rev/min. The influence of the SC on the linear extrapolation of the ETED was reduced by measuring VO<sub>2</sub> after three min of exercise. Measuring VO<sub>2</sub> at this time provided a new linear extrapolation method consisting of ten regression points spread evenly from BLT and ALT. This method produced an ETED with increased precision compared to using regression equations developed from intensities BLT with no forced y-intercept value; (95%CI (L), 0.70±0.26 versus 1.85±1.10, P<0.01; SEP(L/Watt), 0.07±0.02 versus 0.28±0.17; P<0.01). Including a forced y-intercept value with five regression points either BLT or ALT increased the precision of estimating the total energy demand to the same level as when using 10 regression points, (5 points BLT + y-intercept versus 5 points ALT + y-intercept versus 10 points; 95%CI(l), 0.61±0.32, 0.87±0.40, 0.70±0.26; SEP(L/Watt), 0.07±0.03, 0.08±0.04, 0.07±0.02; p>0.05). The VO<sub>2</sub>-power regression can be designed using a reduced number of regression points... ABSTRACT FROM AUTHOR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determinou-se, em eqüinos, o efeito do treinamento sobre as concentrações sangüíneas de lactato e plasmáticas de glicose durante exercício de intensidade progressiva em esteira rolante. Demonstrou-se que o treinamento aeróbico causou diminuição da concentração máxima de lactato e que o limiar de lactato corresponde ao ponto de inflexão da curva de glicose plasmática, confirmando esse parâmetro como indicador da capacidade aeróbica de cavalos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim. The aim of the study was to verify whether endurance training may induce changes on the percentage of peak heart rate (% peak HR) at the lactate threshold (LT) intensity in untrained elderly. Methods. Sixteen healthy men (64.3 ± 4.1 yrs) underwent an incremental test on cycloergometer to determine the LT and the corresponding % peak HR at LT intensity. Afterwards, they were randomly distributed into two groups (n = 8 each): endurance training (ET) and control (C). The ET exercised 3 days a week for 12 weeks. The training session was divided into warm-up (5 min at 50% of LT;), a main part, and a cool-down (5 min 50% below of LT). The main part had a gradual increased volume through the weeks of 2 min. The initial volume on the 1st week was 25 min reaching 47 min at the 12th week. The relative intensity was kept constant (90 to 100% of LT). Results. After 12 weeks, the % peak HR at LT did not change significantly for both groups P > 0.05 (ET 82.9 ± 4.1 vs. 82.5 ± 3.4 and Ç 80.2 ± 7.1 vs. 81.8 ± 7.1). Conclusion. We conclude that endurance training proposed does not change the relative intensity at LT in elderly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims were both to determine lactate and ventilatory threshold during incremental resistance training and to analyze the acute cardiorespiratory and metabolic responses during constant-load resistance exercise at lactate threshold (LT) intensity. Ten healthy men performed 2 protocols on leg press machine. The incremental test was performed to determine the lactate and ventilatory thresholds through an algorithmic adjustment method. After 48 h, a constant-load exercise at LT intensity was executed. The intensity of LT and ventilatory threshold was 27.1 +/- 3.7 and 30.3 +/- 7.9% of 1RM, respectively (P=0.142). During the constant-load resistance exercise, no significant variation was observed between set 9 and set 15 for blood lactate concentration (3.3 +/- 0.9 and 4.1 +/- 1.4 mmol.L-1, respectively. P=0.166) and BORG scale (11.5 +/- 2.9 and 13.0 +/- 3.5, respectively. P=0.783). No significant variation was observed between set 6 and set 15 for minute ventilation (19.4 +/- 4.9 and 22.4 +/- 5.5L. min(-1), respectively. P=0.091) and between S3 and S15 for VO2 (0.77 +/- 0.18 and 0.83 +/- 0.16L. min(-1), respectively. P=1.0). Constant-load resistance exercise at LT intensity corresponds to a steady state of ventilatory, cardio-metabolic parameters and ratings of perceived exertion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determination of an 'anaerobic threshold' plays an important role in the appreciation of an incremental cardiopulmonary exercise test and describes prominent changes of blood lactate accumulation with increasing workload. Two lactate thresholds are discerned during cardiopulmonary exercise testing and used for physical fitness estimation or training prescription. A multitude of different terms are, however, found in the literature describing the two thresholds. Furthermore, the term 'anaerobic threshold' is synonymously used for both, the 'first' and the 'second' lactate threshold, bearing a great potential of confusion. The aim of this review is therefore to order terms, present threshold concepts, and describe methods for lactate threshold determination using a three-phase model with reference to the historical and physiological background to facilitate the practical application of the term 'anaerobic threshold'.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIM: To compare five different protocols for estimating the lactate minimum speed (LMS) with that for estimating the maximal lactate steady state (MLSS) in Arabian horses, in order to obtain a more rapid method for monitoring aerobic capacity and prescribing training schedules. METHODS: Eight purebred Arabian horses were conditioned to exercise on a treadmill for 12 days then submitted to three to five exercise sessions to determine the MLSS. Blood samples were collected from a jugular catheter at specific intervals for measurement of lactate concentrations. The MLSS was the velocity maintained during the last 20 minutes of constant submaximal exercise, at which the concentration of lactate increased by no more than 1.0 mmol/L. The LMS test protocols (P1 - P5) included a warm-up period followed by a high-intensity gallop. The speed was then reduced to 4 m/s, and the incremental portion of the test was initiated. In P1, P2, and P3, the velocity increment was 0.5 m/s, and the duration of each incremental stage was three, five and seven minutes, respectively. In P4 and P5, the velocity increments were 1.0 and 1.5 m/s, respectively, and the duration of the stages was fixed at five minutes each. A second-degree polynomial function was fitted to the lactate-velocity curve, and the velocity corresponding to the lowest concentration of lactate was the LMS. RESULTS: Only the mean LMS determined by P1 and P2 did not differ from the velocity determined by the MLSS test (p > 0.1). There was a strong correlation (r >0.6) between P1 and the MLSS velocity. A limits of agreement plot revealed that the best agreement occurred between the MLSS test and P1 (mean bias = 0.14 m/s), followed by P2 (bias = -0.22 m/s). The lactate concentrations associated with the various LMS protocols did not differ. CONCLUSIONS: This study shows the variation between protocols of the LMS test for determining the onset of blood lactate accumulation but also reveals that, at least for Arabian horses, the P1 protocol of the LMS has good agreement with the MLSS. © 2013 Copyright New Zealand Veterinary Association.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose was to determine running economy and lactate threshold among a selection of male elite football players with high and low aerobic power. Forty male elite football players from the highest Swedish division (“Allsvenskan”) participated in the study. In a test of running economy (RE) and blood lactate accumulation the participants ran four minutes each at 10, 12, 14, and 16 km•h-1 at horizontal level with one minute rest in between each four minutes interval. After the last sub-maximal speed level the participants got two minutes of rest before test of maximal oxygen uptake (VO2max). Players that had a maximal oxygen uptake lower than the average for the total population of 57.0 mL O2•kg-1•minute-1 were assigned to the low aerobic power group (LAP) (n=17). The players that had a VO2max equal to or higher than 57.0 mL O2•kg-1•minute-1 were selected for the high aerobic power group (HAP) (n=23). The VO2max was significantly different between the HAP and LAP group. The average RE, measured as oxygen uptake at 12, 14 and 16km•h-1 was significantly lower but the blood lactate concentration was significantly higher at 14 and 16 km•h-1 for theLAP group compared with the HAP group.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on previous research which shows parallelism between the saliva and blood lactate response during incremental exercise, we hypothesized that a "maximum salivary lactate steady state" (saliva-MLSS) might exist. Thus, the aim of the present investigation was to establish 1) which lower limit for the increase in salivary lactate concentration during a constant workload (i.e., from the 10th to the 20th min) test could be used to determine the saliva-MLSS and 2) if the exercise intensity corresponding to the saliva-MLSS is identical to that evoking the (blood) MLSS. Twelve male amateur athletes of mean (+/-SD) age 24+/-5 year were selected for the study. Based on the results of a previous maximal cycle ergometer test for lactate threshold (LT) determination, each subject performed consecutive constant workload tests of 20-min duration on separate days for MLSS determination, Blood and saliva (25 mu l) samples were collected at 0, 10, and 20 min during the tests for lactate determination. A Student's t-test for paired data demonstrated that a salivary lactate increase of 0.8 mM corresponded to the saliva-MLSS. At this value, indeed, no significant differences were observed between the mean (V) over dot O-2, and W values corresponding to the MLSS and the saliva-MLSS. In conclusion, the present findings indicate that 0.8 mM is the lower limit for the increase in saliva lactate concentration during a constant load test and thus is that which might be used as a reference to determine saliva-MLSS. Furthermore, saliva-MLSS might be used as an alternative to MLSS determination in blood samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Burnley, M., Doust, J.H., Ball, D. and Jones, A.M. (2002) Effects of prior heavy exercise on VO2 kinetics during heavy exercise are related to changes in muscle activity. Journal of Applied Physiology 93, 167-174. RAE2008

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type 2 diabetes is a multifactorial metabolic disease characterized by defects in β-cells function, insulin sensitivity, glucose effectiveness and endogenous glucose production (1). It is widely accepted that insulin and exercise are potent stimuli for glucose transport (2). Acute exercise is known to promote glucose uptake in skeletal muscle via an intact contraction stimulated mechanism (3), while post-exercise improvements in glucose control are due to insulin-dependant mechanisms (2). Hypoxia is also known to promote glucose uptake in skeletal muscle using the contraction stimulated pathway. This has been shown to occur in vitro via an increase in β-cell function, however data in vivo is lacking. The aim of this study was to examine the effects of acute hypoxia with and without exercise on insulin sensitivity (SI2*), glucose effectiveness (SG2*) and β-cell function in individuals with type 2 diabetes. Following an overnight fast, six type 2 diabetics, afer giving informed written consent, completed 60 min of the following: 1) normoxic rest (Nor Rest); 2) hypoxic rest [Hy Rest; O2 = 14.6 (0.4)%]; 3) normoxic exercise (Nor Ex); 4) hypoxic exercise [Hy Ex; O2 = 14.6 (0.4)%]. Exercise trails were set at 90% of lactate threshold. Each condition was followed by a labelled intravenous glucose tolerance test (IVGTT) to provide estimations of SI2*, SG2* and β-cell function. Values are presented as means (SEM). Two-compartmental minimal model analysis showed SI2* to be higher following Hy Rest when comparisons were made with Nor Rest (P = 0.047). SI2* was also higher following Hy Ex [4.37 (0.48) x10-4 . min-1 (μU/ml)] compared to Nor Ex [3.24 (0.51) x10-4 . min-1 (μU/ml)] (P = 0.048). Acute insulin response to glucose (AIRg) was reduced following Hy Rest vs. Nor Rest (P = 0.014 - Table 1). This study demonstrated that 1) hypoxia has the ability to increase glucose disposal; 2) hypoxic-induced improvements in glucose tolerance in the 4 hr following exposure can be attributed to improvements in peripheral SI2*; 3) resting hypoxic exposure improves β-cell function and 4) exercise and hypoxia have an additive effect on SG2* in type 2 diabetics. These findings suggest a possible use for hypoxia both with and without exercise in the clinical treatment of type 2 diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction Performance in cross-country skiing is influenced by the skier’s ability to continuously produce propelling forces and force magnitude in relation to the net external forces. A surrogate indicator of the “power supply” in cross-country skiing would be a physiological variable that reflects an important performance-related capability, whereas the body mass itself is an indicator of the “power demand” experienced by the skier. To adequately evaluate an elite skier’s performance capability, it is essential to establish the optimal ratio between the physiological variable and body mass. The overall aim of this doctoral thesis was to investigate the importance of body-mass exponent optimization for the evaluation of performance capability in cross-country skiing. Methods In total, 83 elite cross-country skiers (56 men and 27 women) volunteered to participate in the four studies. The physiological variables of maximal oxygen uptake (V̇O2max) and oxygen uptake corresponding to a blood-lactate concentration of 4 mmol∙l-1 (V̇O2obla) were determined while treadmill roller skiing using the diagonal-stride technique; mean oxygen uptake (V̇O2dp) and upper-body power output (Ẇ) were determined during double-poling tests using a ski-ergometer. Competitive performance data for elite male skiers were collected from two 15-km classical-technique skiing competitions and a 1.25-km sprint prologue; additionally, a 2-km double-poling roller-skiing time trial using the double-poling technique was used as an indicator of upper-body performance capability among elite male and female junior skiers. Power-function modelling was used to explain the race and time-trial speeds based on the physiological variables and body mass. Results The optimal V̇O2max-to-mass ratios to explain 15-km race speed were V̇O2max divided by body mass raised to the 0.48 and 0.53 power, and these models explained 68% and 69% of the variance in mean skiing speed, respectively; moreover, the 95% confidence intervals (CI) for the body-mass exponents did not include either 0 or 1. For the modelling of race speed in the sprint prologue, body mass failed to contribute to the models based on V̇O2max, V̇O2obla, and V̇O2dp. The upper-body power output-to-body mass ratio that optimally explained time-trial speed was Ẇ ∙ m-0.57 and the model explained 63% of the variance in speed. Conclusions The results in this thesis suggest that V̇O2max divided by the square root of body mass should be used as an indicator of performance in 15-km classical-technique races among elite male skiers rather than the absolute or simple ratio-standard scaled expression. To optimally explain an elite male skier’s performance capability in sprint prologues, power-function models based on oxygen-uptake variables expressed absolutely are recommended. Moreover, to evaluate elite junior skiers’ performance capabilities in 2-km double-poling roller-skiing time trials, it is recommended that Ẇ divided by the square root of body mass should be used rather than absolute or simple ratio-standard scaled expression of power output.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction Researchers have, for decades, contributed to an increased collective understanding of the physiological demands in cross-country skiing; however, almost all of these studies have used either non-elite subjects and/or performances that emulate cross-country skiing. To establish the physiological demands of cross-country skiing, it is important to relate the investigated physiological variables to the competitive performance of elite skiers. The overall aim of this doctoral thesis was, therefore, to investigate the external validity of physiological test variables to determine the physiological demands in competitive elite cross-country skiing. Methods The subjects in Study I – IV were elite male (I – III) and female (III – IV) cross-country skiers. In all studies, the relationship between test variables (general and ski-specific) and competitive performances (i.e. the results from competitions or the overall ski-ranking points of the International Ski Federation (FIS) for sprint (FISsprint) and distance (FISdist) races) were analysed. Test variables reflecting the subject’s general strength, upper-body and whole-body oxygen uptake, oxygen uptake and work intensity at the lactate threshold, mean upper-body power, lean mass, and maximal double-poling speed were investigated. Results The ability to maintain a high work rate without accumulating lactate is an indicator of distance performance, independent of sex (I, IV). Independent of sex, high oxygen uptake in whole-body and upper-body exercise was important for both sprint (II, IV) and distance (I, IV) performance. The maximal double-poling speed and 60-s double-poling mean power output were indicators of sprint (IV) and distance performance (I), respectively. Lean mass was correlated with distance performance for women (III), whereas correlations were found between lean mass and sprint performance among both male and female skiers (III). Moreover, no correlations between distance performance and test variables were derived from tests of knee-extension peak torque, vertical jumps, or double poling on a ski-ergometer with 20-s and 360-s durations (I), whereas gross efficiency while treadmill roller skiing showed no correlation with either distance or sprint performance in cross-country skiing (IV). Conclusion The results in this thesis show that, depending on discipline and sex, maximal and peak oxygen uptake, work intensity at the lactate threshold, lean mass, double-poling mean power output, and double-poling maximal speed are all externally valid physiological test variables for evaluation of performance capability among elite cross-country skiers; however, to optimally indicate performance capability different test-variable expressions should be used; in general, the absolute expression appears to be a better indicator of competitive sprint performance whereas the influence of body mass should be considered when evaluating competitive distance performance capability of elite cross-country skiers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to determine the influence of pedal rate on the precision and quantification of the accumulated oxygen deficit (AOD). Eight trained male triathletes completed a lactate threshold test, VO2 peak test, 10 x 3 min submaximal exercise bouts and a high-intensity exercise bout, all performed at 80 and 120 rev/min. For both pedal rates the intensities for the sub-maximal and high-intensity tests were relative to the lactate threshold and VO2 peak work rates. The VO2-power regressions were calculated using 5 intensities from above the lactate threshold combined with a y intercept value with VO2 measured after 3 min of exercise. For the 120 compared to the 80 rev/min tests, the lactate threshold work rate (255±13 versus 276±47 Watts) (p<0.01) and VO2 peak work rate (352±17 versus 382±20, Watts) (p<0.05) were lower at 120 rev/m. Conversely, the VO2 peak and the VO2 measured during the exhaustive exercise were the same for both pedal rates (p>0.05). Using linear regression modelling the slope of the VO2-power regression (0.0112 versus 0.010 L/Watt) (p<0.01), the estimated total energy demand (ETED) (5.13±0.75 versus 4.89±0.88 L/min) and the AOD (4.27±0.94 versus 3.66±1.25 L) (p<0.05) were greater at 120 rev/m. However, the 95% confidence interval for the ETED and the standard error of the predicted value were the same for both pedal rates (p>0.05). Our results demonstrate that pedal rate effects the size but not the precision of the calculated AOD and should therefore be considered when developing an AOD protocol.