94 resultados para laccase
Resumo:
Multilayer film of laccase, poly-L-lysine (PLL) and multi-walled carbon nanotubes (MWNTs) were prepared by a layer-by-layer self-assembly technique. The results of the UV-vis spectroscopy and scanning electron microscopy studies demonstrated a uniform growth of the multilayer. The catalytic behavior of the modified electrode was investigated. The (MWNTs/PLL/laccase)(n) multilayer modified electrode catalyzed four-electron reduction of O-2 to water, without any mediator.
Resumo:
Laccase has been immobilized on the carbon nanotubes modified glassy carbon electrode surface by adsorption. As-prepared laccase retains good electrocatalytic activity to oxygen reduction by using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) as the mediator. It can be used as a biosensor for the determination of catechol with broad linear range.
Resumo:
The hydrophobic carbon nanotubes-ionic liquid (CNTs-IL) get forms a stable modified film on hydrophobic graphite electrode surface. Laccase immobilized on the CNTs-IL gel film modified electrode shows good thermal stability and enhanced electrochemical catalytic ability. The optimal bioactivity occurs with increasing temperature and this optimum is 20 degrees C higher in comparison to free laccase. The improvement of laccase thermal stability may be due to the microenvironment of hydrophobic CNTs-IL gel on graphite electrode surface. On the other hand, the sensitive detection of oxygen has been achieved due to the feasibility of oxygen reduction by both of laccase and nanocomposite of CNTs-IL gel. Furthermore, the laccase hybrid nanocomposite also shows the fast electrochemical response and high sensitivity to the inhibitors of halide ions with the approximate IC50 of 0.01, 4.2 and 87.5 mM for the fluoride, chloride and bromide ions, respectively. It implies the feasibility of laccase modified electrode as an inhibition biosensor to detect the modulators of laccase.
Resumo:
The carbon nanotubes-chitosan (CNTs-CS) composite provides a suitable biosensing matrix due to its good conductivity, high stability, and good biocompatibility. Enzymes can be firmly incorporated into the matrix without the aid of other cross-linking reagents. The composite is easy to form insoluble film in solution above pH 6.3. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the CNTs-CS composite film has been developed. At pH 6.0, the fungi laccase incorporated into the composite film remains better catalytic activity than that dissolved in solution. The system is in favor of the accessibility of substrate to the active site of laccase, thus the affinity to substrates is improved greatly, such as 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), catechol, and 0, with K. values of 19.86 mu M, 9.43 mu M, and 3.22 mM, respectively. The major advantages of the as-prepared biosensor are: detecting different substrates (ABTS, catechol, and 02), possessing high affinity and sensitivity, durable long-term stability, and facile preparation procedure. On the other hand, the system can be applied in fabrication of biofuel cells as the cathodic catalysts based on its good electrocatalysis for oxygen reduction.
Resumo:
Laccase-mediator systems have numerous potential uses for green oxidations, but their practical use may be limited because the reactive, oxidised mediators deactivate the enzyme. TEMPO, 4-hydroxybenzyl alcohol, phenothiazine and 2-hydroxybiphenyl caused almost complete deactivation of laccase from Trametes versicolor within 24-140 h. By contrast, 18% activity was retained after 188 h in controls without mediator, and 15% in the presence of ABTS. A biphasic reaction system was developed to protect the laccase, by partitioning the mediator into water-immiscible ionic liquids. In the presence of [C mim][AOT], laccase retained 54, 35, 35 and 41% activity after 188 h in the presence of 4-hydroxybenzyl alcohol, phenothiazine and 2-hydroxybiphenyl and ABTS, respectively, whilst 30% activity was retained in the presence of [N][Sac] and TEMPO. The protection against deactivation by the mediators correlated strongly with the distribution coefficients of the mediators between ionic liquids and water. © 2014 The Royal Society of Chemistry.
Resumo:
This study focuses on the evaluation of raw keratin as a potential material to develop composites with novel characteristics. Herein, we report a mild and eco-friendly fabrication of in-house extracted feather keratin-based novel enzyme assisted composites consisting of ethyl cellulose (EC) as a backbone material. A range of composites between keratin and EC using different keratin: EC ratios were prepared and characterised. Comparing keratin to the composites, the FT-IR peak at 1,630 cm-1 shifted to a lower wavenumber of 1,610 cm-1 in keratin-EC which typically indicates the involvement of β-sheet structures of the keratin during the graft formation process. SEM analysis revealed that the uniform dispersion of the keratin increases the area of keratin-EC contact which further contributes to the efficient functionality of the resulting composites. In comparison to the pristine keratin and EC, a clear shift in the XRD peaks was also observed at the specific region of 2-Theta values of keratin-g-EC. The thermo- mechanical properties of the composites reached their highest levels in comparison to the keratin which was too fragile to be measured for its mechanical properties. Considerable improvement in the water contact angle and surface tension properties was also recorded.
Resumo:
In the present study, a novel enzyme-based methodology for grafting Polyhydroxyalkanoates (PHAs) onto the ethyl cellulose (EC) as a backbone polymer was developed. Laccase assisted copolymerization was carried out under mild and eco-friendly reaction conditions. The resulting homogeneous composite membranes were characterized by Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Atomic Force Microscopy (AFM). The FTIR spectra of pure PHAs and PHAs containing graft composites (PHAs-g-EC) showed their strong characteristic bands at 1721 cm1, 1651 cm-1 and 1603 cm-1 respectively. Other accompanying bands in the range of 900-1300 cm-1 correspond to C=O vibration and C-O-C bond stretching, which could be contributed from PHAs and EC, respectively. The high intensity of the 3358 cm-1 band in the graft composite may have corresponded to the degradation of the carboxylic group from PHAs and also showed an increase of hydrogen-bonded groups at that distinct band region. The morphology was examined by SEM, which showed the well dispersed PHAs crystals in the backbone polymer of EC. XRD pattern for PHAs showed distinct peaks at 2-Theta values of 28o, 32o, 34o, 39o, 46o, 57o, 64o, 78o and 84o that represent the crystalline nature of PHAs. In comparison with those of neat PHAs, the degree of crystallinity for PHAs-g-EC decreased and this reduction is mainly because of the new cross-linking of PHAs within the EC backbone that changes the morphology and destroys the crystallites. Improved mechanical properties were observed for the PHAs-g-EC as compared to the individual components due to the impregnation of EC as reinforcement into the PHAs matrix. Improved mechanical strength enhanced thermal properties, along with low crystallinity of the present PHAs-g-EC suggesting its potential for various industrial and bio-medical applications.
Resumo:
Today more than 99% of plastics are petroleum-based because of availability and cost of the raw material. The durability of these disposed plastics contributes to the environmental problems as waste and their persistence in the environment causes deleterious effects on the ecosystem. Environmental pollution awareness and the demand for green technology have drawn considerable attention of both academia and industry into biodegradable polymers. In this regard green chemistry technology has the potential to provide solution to this problematic issue. Laccase bio-grafting has recently been the focus of green chemistry technologies due to the growing environmental concerns, legal restrictions and increasing availability of scientific knowledge. In the last several years, research covering various applications of laccases has been increased rapidly particularly in the field of grafting. In principle, laccase-assisted graft co-polymerization may impart a variety of new functionalities to a polymer. The modified polymers through grafting have a bright future and their development is practically boundless. In present work, novel biodegradable graft copolymers combining the advantages of bacterial cellulose backbone and PHB side chains will be prepared by introducing enzymatic grafting technique. The present research will be a first step in the biopolymer modification. To date no report has been found in literature explaining the enzymatic grafting of PHAs. The technique would also provide an efficient modulation approach to improve the biodegradability and biocompatibility of the graft copolymer. The newly grafted copolymers will exhibit unique functionalities with wider range of potential applications mainly in tissue engineering, biosensors, pharmaceutical industry (drug delivery systems) and bio-plastics.
Resumo:
In the present study, we propose a green route to prepare poly(3-hydroxybutyrate) [(P(3HB)] grafted ethyl cellulose (EC) based green composites with novel characteristics through laccase-assisted grafting. P(3HB) was used as a side chain whereas, EC as a backbone material under an ambient processing conditions. A novel laccase obtained from Aspergillus niger through its heterologous expression in Saccharomyces cerevisiae was used as a green catalyst for grafting purposes without the use of additional initiator and/or cross-linking agents. Subsequently, the resulting P(3HB)-g-EC composites were characterized using a range of analytical and imagining techniques. Fourier transform infrared spectroscopy (FT-IR) spectra showed an increase in the hydrogen-bonding type interactions between the side chains of P(3HB) and backbone material of EC. Evidently, X-ray diffraction (XRD) analysis revealed a decrease in the crystallinity of the P(3HB)-g-EC composites as compared to the pristine individual polymers. A homogeneous P(3HB) distribution was also achieved in case of the graft composite prepared in the presence of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a mediator along with laccase as compared to the composite prepared using pure laccase alone. A substantial improvement in the thermal and mechanical characteristics was observed for grafted composites up to the different extent as compared to the pristine counterparts. The hydrophobic/hydrophilic properties of the grafted composites were better than those of the pristine counterparts.
Resumo:
This study focused on the development of a sensitive enzymatic biosensor for the determination of pirimicarb pesticide based on the immobilization of laccase on composite carbon paste electrodes. Multi- walled carbon nanotubes(MWCNTs)paste electrode modified by dispersion of laccase(3%,w/w) within the optimum composite matrix(60:40%,w/w,MWCNTs and paraffin binder)showed the best performance, with excellent electron transfer kinetic and catalytic effects related to the redox process of the substrate4- aminophenol. No metal or anti-interference membrane was added. Based on the inhibition of laccase activity, pirimicarb can be determined in the range 9.90 ×10- 7 to 1.15 ×10- 5 molL 1 using 4- aminophenol as substrate at the optimum pH of 5.0, with acceptable repeatability and reproducibility (relative standard deviations lower than 5%).The limit of detection obtained was 1.8 × 10-7 molL 1 (0.04 mgkg 1 on a fresh weight vegetable basis).The high activity and catalytic properties of the laccase- based biosensor are retained during ca. one month. The optimized electroanalytical protocol coupled to the QuEChERS methodology were applied to tomato and lettuce samples spiked at three levels; recoveries ranging from 91.0±0.1% to 101.0 ± 0.3% were attained. No significant effects in the pirimicarb electro- analysis were observed by the presence of pro-vitamin A, vitamins B1 and C,and glucose in the vegetable extracts. The proposed biosensor- based pesticide residue methodology fulfills all requisites to be used in implementation of food safety programs.
Resumo:
The present study has identified an actinomycete culture (S. psammoticus) which was capable of producing all the three major ligninolytic enzymes. The study revealed that least explored mangrove regions are potential sources for the isolation of actinomycetes with novel characteristics. The laccase production by the strain in SmF and SSF was found to be much higher than the reported values. The growth of the organism was favoured by alkaline pH and salinity of the medium. The enzyme also exhibited novel characteristics such as activity and stability at alkaline pH and salt tolerance. These two characters are quite significant from the industrial point of view making the enzyme an ideal candidate for industrial applications. Many of the application studies to date are focused on enzymes from fungal sources. However, the fungal laccases, which are mostly acidic in nature, could not be used universally for all application purposes especially, for the treatment of effluents from different industries, largely due to the alkaline nature of the effluents. Under such situations the enzymes from organisms like S. psammoticus with wide pH range could play a better role than the fungal counterparts. In the present study, the ability of the isolated strain and laccase in the degradation of dyes and phenolic compounds was successfully proved. The reusability of the immobilized enzyme system made the entire treatment process inexpensive. Thus it can be concluded from the present study that the laccase from this organism could be hopefully employed for the eco-friendly treatment of dye or phenol containing industrial effluents from various sources.
Resumo:
Several colorimetric and chromatographic methods have been used for the identification and quantification of methyldopa (MA) in pharmaceutical formulations and clinical samples. However, these methods are time- and reagent-consuming, which stimulated our efforts to develop a simple, fast, and low-cost alternative method. We carried out an electroanalytical method for the determination of MA in pharmaceutical formulations using the crude enzymatic extract of laccase from Pycnoporus sanguineus as oxidizing agent. This method is based on the biochemical oxidation of MA by laccase (LAC), both in solution, followed by electrochemical reduction on glassy carbon electrode surface. This method was employed for the determination of MA in pure and pharmaceutical formulations and compared with the results obtained using the official method. A wide linear curve from 23 x 10(-5) to 1 x 10(-4) mol L(-1) was found with a detection limit calculated from 43 x 10(-6) mol L(-1).