999 resultados para la machine de Helmholtz
Resumo:
Référence bibliographique : Rol, 58923
Resumo:
Référence bibliographique : Rol, 58924
Resumo:
Cette thèse étudie la représentation de la machine chez Robida. La partie centrale de notre recherche s’intéresse à révéler ses significations et interroge sa mise en scène littéraire et visuelle dans chacun des romans de la trilogie d’anticipation scientifique la plus connue de l’auteur-illustrateur. La quête se transforme en un voyage continu entre le lisible et le visible, le dit et le non-dit, la description littéraire et l’imagination, la réalité et la fiction. Nous nous intéressons à l’évolution de la vision de Robida : dans Le Vingtième siècle, l’image de la machine bienfaisante, facilitant la vie de l’homme, économisant du temps et de l’argent, et contribuant largement à son bonheur et à son divertissement, à part quelques accidents très limités, se traduit par une complémentarité avantageuse entre le texte d’une part et les vignettes, les tableaux et les hors-textes se trouvant dans le récit, d’autre part. Celle-ci se transforme, dans La Guerre au vingtième siècle, en une inquiétude vis-à-vis de l’instrumentalisation de la machine pour la guerre, qui s’exprime par une projection de la narration vers l’illustration in-texte, et sensibilise le lecteur en montrant le caractère violent et offensif d’appareils uniquement nommés. Celle-ci devient finalement, dans La Vie électrique, synonyme d’un pessimisme total quant à l’implication de la machine dans la société et à la puissance du savoir scientifique dans l’avenir, qui s’affiche dans des hors-textes sombres et maussades. Dans ce cadre, la machine illustrée exige une lecture iconotextuelle, une importance accordée au détail, aux éléments présents ou absents, aux modalités de passage d’un mode de présentation à l’autre, à la place anticipée ou tardive de l’illustration, au rapport entre le texte, le dessin et sa légende, aux mots qui migrent vers le dessin et surtout au reste du décor incomplet. Chez Robida, les louanges qui passent à la critique et l’humour qui se fait cynisme, sont assez représentatifs des espoirs et des craintes suscités par la découverte et la mise en application de l’électricité, par ses vertus, mais aussi par son aspect incontrôlable.
Resumo:
Mode of access: Internet.
Resumo:
L'entraînement sans surveillance efficace et inférence dans les modèles génératifs profonds reste un problème difficile. Une approche assez simple, la machine de Helmholtz, consiste à entraîner du haut vers le bas un modèle génératif dirigé qui sera utilisé plus tard pour l'inférence approximative. Des résultats récents suggèrent que de meilleurs modèles génératifs peuvent être obtenus par de meilleures procédures d'inférence approximatives. Au lieu d'améliorer la procédure d'inférence, nous proposons ici un nouveau modèle, la machine de Helmholtz bidirectionnelle, qui garantit qu'on peut calculer efficacement les distributions de haut-vers-bas et de bas-vers-haut. Nous y parvenons en interprétant à les modèles haut-vers-bas et bas-vers-haut en tant que distributions d'inférence approximative, puis ensuite en définissant la distribution du modèle comme étant la moyenne géométrique de ces deux distributions. Nous dérivons une borne inférieure pour la vraisemblance de ce modèle, et nous démontrons que l'optimisation de cette borne se comporte en régulisateur. Ce régularisateur sera tel que la distance de Bhattacharyya sera minisée entre les distributions approximatives haut-vers-bas et bas-vers-haut. Cette approche produit des résultats de pointe en terme de modèles génératifs qui favorisent les réseaux significativement plus profonds. Elle permet aussi une inférence approximative amérliorée par plusieurs ordres de grandeur. De plus, nous introduisons un modèle génératif profond basé sur les modèles BiHM pour l'entraînement semi-supervisé.
Resumo:
L'entraînement sans surveillance efficace et inférence dans les modèles génératifs profonds reste un problème difficile. Une approche assez simple, la machine de Helmholtz, consiste à entraîner du haut vers le bas un modèle génératif dirigé qui sera utilisé plus tard pour l'inférence approximative. Des résultats récents suggèrent que de meilleurs modèles génératifs peuvent être obtenus par de meilleures procédures d'inférence approximatives. Au lieu d'améliorer la procédure d'inférence, nous proposons ici un nouveau modèle, la machine de Helmholtz bidirectionnelle, qui garantit qu'on peut calculer efficacement les distributions de haut-vers-bas et de bas-vers-haut. Nous y parvenons en interprétant à les modèles haut-vers-bas et bas-vers-haut en tant que distributions d'inférence approximative, puis ensuite en définissant la distribution du modèle comme étant la moyenne géométrique de ces deux distributions. Nous dérivons une borne inférieure pour la vraisemblance de ce modèle, et nous démontrons que l'optimisation de cette borne se comporte en régulisateur. Ce régularisateur sera tel que la distance de Bhattacharyya sera minisée entre les distributions approximatives haut-vers-bas et bas-vers-haut. Cette approche produit des résultats de pointe en terme de modèles génératifs qui favorisent les réseaux significativement plus profonds. Elle permet aussi une inférence approximative amérliorée par plusieurs ordres de grandeur. De plus, nous introduisons un modèle génératif profond basé sur les modèles BiHM pour l'entraînement semi-supervisé.