21 resultados para kuvankäsittely


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work had two primary objectives: 1) to produce a working prototype for automated printability assessment and 2) to perform a study of available machine vision and other necessary hardware solutions. The three printability testing methods, IGT Picking,He¬liotest, and mottling, considered in this work have several different requirements and the task was to produce a single automated testing system suitable for all methods. A system was designed and built and its performance was tested using the Heliotest. Working proto¬types are important tools for implementing theoretical methods into practical systems and testing and demonstrating the methodsin real life conditions. The system was found to be sufficient for the Heliotest method. Further testing and possible modifications related to other two test methods were left for future works. A short study of available systems and solutions concerning image acquisition of machine vision was performed. The theoretical part of this study includes lighting systems, optical systems and image acquisition tools, mainly cameras and the underlying physical aspects for each portion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The topic of this thesis is studying how lesions in retina caused by diabetic retinopathy can be detected from color fundus images by using machine vision methods. Methods for equalizing uneven illumination in fundus images, detecting regions of poor image quality due toinadequate illumination, and recognizing abnormal lesions were developed duringthe work. The developed methods exploit mainly the color information and simpleshape features to detect lesions. In addition, a graphical tool for collecting lesion data was developed. The tool was used by an ophthalmologist who marked lesions in the images to help method development and evaluation. The tool is a general purpose one, and thus it is possible to reuse the tool in similar projects.The developed methods were tested with a separate test set of 128 color fundus images. From test results it was calculated how accurately methods classify abnormal funduses as abnormal (sensitivity) and healthy funduses as normal (specificity). The sensitivity values were 92% for hemorrhages, 73% for red small dots (microaneurysms and small hemorrhages), and 77% for exudates (hard and soft exudates). The specificity values were 75% for hemorrhages, 70% for red small dots, and 50% for exudates. Thus, the developed methods detected hemorrhages accurately and microaneurysms and exudates moderately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tässä työssä raportoidaan hybridihitsauksesta otettujen suurnopeuskuvasarjojen automaattisen analyysijärjestelmän kehittäminen.Järjestelmän tarkoitus oli tuottaa tietoa, joka avustaisi analysoijaa arvioimaan kuvatun hitsausprosessin laatua. Tutkimus keskittyi valokaaren taajuuden säännöllisyyden ja lisäainepisaroiden lentosuuntien mittaamiseen. Valokaaria havaittiin kuvasarjoista sumean c-means-klusterointimenetelmän avullaja perättäisten valokaarien välistä aikaväliä käytettiin valokaaren taajuuden säännöllisyyden mittarina. Pisaroita paikannettiin menetelmällä, jossa yhdistyi pääkomponenttianalyysi ja tukivektoriluokitin. Kalman-suodinta käytettiin tuottamaan arvioita pisaroiden lentosuunnista ja nopeuksista. Lentosuunnanmääritysmenetelmä luokitteli pisarat niiden arvioitujen lentosuuntien perusteella. Järjestelmän kehittämiseen käytettävissä olleet kuvasarjat poikkesivat merkittävästi toisistaan kuvanlaadun ja pisaroiden ulkomuodon osalta, johtuen eroista kuvaus- ja hitsausprosesseissa. Analyysijärjestelmä kehitettiin toimimaan pienellä osajoukolla kuvasarjoja, joissa oli tietynlainen kuvaus- ja hitsausprosessi ja joiden kuvanlaatu ja pisaroiden ulkomuoto olivat samankaltaisia, mutta järjestelmää testattiin myös osajoukon ulkopuolisilla kuvasarjoilla. Testitulokset osoittivat, että lentosuunnanmääritystarkkuus oli kohtuullisen suuri osajoukonsisällä ja pieni muissa kuvasarjoissa. Valokaaren taajuuden säännöllisyyden määritys oli tarkka useammassa kuvasarjassa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lasertekniikkaa hyödyntävä 3D-kuvaustekniikka tuo uusia mahdollisuuksia robotilla suoritettavaan kasastapoimintaan. Kasasta otetun syvyyskuvan avulla tuotteista voidaan määrittää perinteisen XY-paikkatiedon lisäksi tuotteen korkeus- ja asentotieto. Näitä uusia ominaisuuksia hyödyntämällä robotilla voidaan suorittaa yksittäisen tuotteen poiminta kasasta eri korkeuksilta ja eri asennoista. Diplomityö kuuluu osana Master Automation Groupin ensimmäiseen 3D-tekniikkaan perustuvaan MAG PixCell 3D -robosoituun kappaleenkäsittelysoluun. Työn tavoitteena on kehittääsyvyyskuvan käsittelyyn algoritmeja, joiden avulla robotilla voidaan poimia yksitellen kasassa olevia metallisia saksen teriä. Algoritmien tarkoituksena on varmistaa kasasta löydettyjen terien poimittavuus sekä määrittää poimittavien terien korkeudet ja asennot. Tarkastusten jälkeen robotille välitetään terien XYZ-koordinaatti- ja asentotiedot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tässä työssä raportoidaan harjoitustyön kehittäminen ja toteuttaminen Aktiivisen- ja robottinäön kurssille. Harjoitustyössä suunnitellaan ja toteutetaan järjestelmä joka liikuttaa kappaleita robottikäsivarrella kolmiuloitteisessa avaruudessa. Kappaleidenpaikkojen määrittämiseen järjestelmä käyttää digitaalisia kuvia. Tässä työssä esiteltävässä harjoitustyötoteutuksessa käytettiin raja-arvoistusta HSV-väriavaruudessa kappaleiden segmentointiin kuvasta niiden värien perusteella. Segmentoinnin tuloksena saatavaa binäärikuvaa suodatettiin mediaanisuotimella kuvan häiriöiden poistamiseksi. Kappaleen paikkabinäärikuvassa määritettiin nimeämällä yhtenäisiä pikseliryhmiä yhtenäisen alueen nimeämismenetelmällä. Kappaleen paikaksi määritettiin suurimman nimetyn pikseliryhmän paikka. Kappaleiden paikat kuvassa yhdistettiin kolmiuloitteisiin koordinaatteihin kalibroidun kameran avulla. Järjestelmä liikutti kappaleita niiden arvioitujen kolmiuloitteisten paikkojen perusteella.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Luokittelujärjestelmää suunniteltaessa tarkoituksena on rakentaa systeemi, joka pystyy ratkaisemaan mahdollisimman tarkasti tutkittavan ongelma-alueen. Hahmontunnistuksessa tunnistusjärjestelmän ydin on luokitin. Luokittelun sovellusaluekenttä on varsin laaja. Luokitinta tarvitaan mm. hahmontunnistusjärjestelmissä, joista kuvankäsittely toimii hyvänä esimerkkinä. Myös lääketieteen parissa tarkkaa luokittelua tarvitaan paljon. Esimerkiksi potilaan oireiden diagnosointiin tarvitaan luokitin, joka pystyy mittaustuloksista päättelemään mahdollisimman tarkasti, onko potilaalla kyseinen oire vai ei. Väitöskirjassa on tehty similaarisuusmittoihin perustuva luokitin ja sen toimintaa on tarkasteltu mm. lääketieteen paristatulevilla data-aineistoilla, joissa luokittelutehtävänä on tunnistaa potilaan oireen laatu. Väitöskirjassa esitetyn luokittimen etuna on sen yksinkertainen rakenne, josta johtuen se on helppo tehdä sekä ymmärtää. Toinen etu on luokittimentarkkuus. Luokitin saadaan luokittelemaan useita eri ongelmia hyvin tarkasti. Tämä on tärkeää varsinkin lääketieteen parissa, missä jo pieni tarkkuuden parannus luokittelutuloksessa on erittäin tärkeää. Väitöskirjassa ontutkittu useita eri mittoja, joilla voidaan mitata samankaltaisuutta. Mitoille löytyy myös useita parametreja, joille voidaan etsiä juuri kyseiseen luokitteluongelmaan sopivat arvot. Tämä parametrien optimointi ongelma-alueeseen sopivaksi voidaan suorittaa mm. evoluutionääri- algoritmeja käyttäen. Kyseisessä työssä tähän on käytetty geneettistä algoritmia ja differentiaali-evoluutioalgoritmia. Luokittimen etuna on sen joustavuus. Ongelma-alueelle on helppo vaihtaa similaarisuusmitta, jos kyseinen mitta ei ole sopiva tutkittavaan ongelma-alueeseen. Myös eri mittojen parametrien optimointi voi parantaa tuloksia huomattavasti. Kun käytetään eri esikäsittelymenetelmiä ennen luokittelua, tuloksia pystytään parantamaan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vuosi vuodelta kasvava tietokoneiden prosessointikyky on mahdollistanut harmaataso- ja RGB-värikuvia tarkempien spektrikuvien käsittelyn järjellisessä ajassa ilman suuria kustannuksia. Ongelmana on kuitenkin, ettei talletus- ja tiedonsiirtomedia ole kehittynyt prosessointikyvyn vauhdissa. Ratkaisu tähän ongelmaan on spektrikuvien tiivistäminen talletuksen ja tiedonsiirron ajaksi. Tässä työssä esitellään menetelmä, jossa spektrikuva tiivistetään kahdessa vaiheessa: ensin ryhmittelemällä itseorganisoituvan kartan (SOM) avulla ja toisessa vaiheessa jatketaan tiivistämistä perinteisin menetelmin. Saadut tiivistyssuhteet ovat merkittäviä vääristymän pysyessä siedettävänä. Työ on tehty Lappeenrannan teknillisen korkeakoulun Tietotekniikan osaston Tietojenkäsittelytekniikan tutkimuslaboratoriossa osana laajempaa kuvantiivistyksen tutkimushanketta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kolmiulotteisten kappaleiden rekonstruktio on yksi konenäön haastavimmista ongelmista, koska kappaleiden kolmiulotteisia etäisyyksiä ei voida selvittää yhdestä kaksiulotteisesta kuvasta. Ongelma voidaan ratkaista stereonäön avulla, jossa näkymän kolmiulotteinen rakenne päätellään usean kuvan perusteella. Tämä lähestymistapa mahdollistaa kuitenkin vain rekonstruktion niille kappaleiden osille, jotka näkyvät vähintään kahdessa kuvassa. Piilossa olevien osien rekonstruktio ei ole mahdollista pelkästään stereonäön avulla. Tässä työssä on kehitetty uusi menetelmä osittain piilossa olevien kolmiulotteisten tasomaisten kappaleiden rekonstruktioon. Menetelmän avulla voidaan selvittää hyvällä tarkkuudella tasomaisista pinnoista koostuvan kappaleen muoto ja paikka käyttäen kahta kuvaa kappaleesta. Menetelmä perustuu epipolaarigeometriaan, jonka avulla selvitetään molemmissa kuvissa näkyvät kappaleiden osat. Osittain piilossa olevien piirteiden rekonstruointi suoritetaan käyttämäen stereonäköä sekä tietoa kappaleen rakenteesta. Esitettyä ratkaisua voitaisiin käyttää esimerkiksi kolmiulotteisten kappaleiden visualisointiin, robotin navigointiin tai esineentunnistukseen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tärkeä tehtävä ympäristön tarkkailussa on arvioida ympäristön nykyinen tila ja ihmisen siihen aiheuttamat muutokset sekä analysoida ja etsiä näiden yhtenäiset suhteet. Ympäristön muuttumista voidaan hallita keräämällä ja analysoimalla tietoa. Tässä diplomityössä on tutkittu vesikasvillisuudessa hai vainuja muutoksia käyttäen etäältä hankittua mittausdataa ja kuvan analysointimenetelmiä. Ympäristön tarkkailuun on käytetty Suomen suurimmasta järvestä Saimaasta vuosina 1996 ja 1999 otettuja ilmakuvia. Ensimmäinen kuva-analyysin vaihe on geometrinen korjaus, jonka tarkoituksena on kohdistaa ja suhteuttaa otetut kuvat samaan koordinaattijärjestelmään. Toinen vaihe on kohdistaa vastaavat paikalliset alueet ja tunnistaa kasvillisuuden muuttuminen. Kasvillisuuden tunnistamiseen on käytetty erilaisia lähestymistapoja sisältäen valvottuja ja valvomattomia tunnistustapoja. Tutkimuksessa käytettiin aitoa, kohinoista mittausdataa, minkä perusteella tehdyt kokeet antoivat hyviä tuloksia tutkimuksen onnistumisesta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Työssä on tutkittu Koskisen Oy:n vaneritehtaan 2. kuivauslinjalla toimivaa viilun laatulajittelujärjestelmää, jonka toiminnan tehostamiseksi haettiin uusia, vaihtoehtoisia ratkaisuja. Lajittelujärjestelmän toiminnan nopeuttamiseen ja toimivuuden kehittämiseksi haettiin ratkaisuja dimensio-, reuna- ja sisävikojen käsittelyyn. Linjan käyttöasteen kasvattamiseksi sen vikadiagnostiikkaan ja toi¬min¬nan seurantaan haettiin myös uusia menetelmiä. Kuvatun arkin reunatietojen avulla pystytään ottamaan huomioon käytönaikaisten asemointivirheiden aiheuttamat mittavirheet. Vika-alueiden harmaatasoarvoista kerättyä tietoa käytetään histogrammipiirteiden irrotuksessa oksien luokittelua parantamiseksi. Neuroluokittelijoiden käyttöönottoa luokittelijoina puoltavat niiden luokittelunopeus itse luokittelussa ja lähes k-NN-luokittimen tasoon yltävä luokittelutarkkuus. Neuroluokittelijoista tutkittiin monikerros-Perceptron- (MLP) ja oppiva vektorikvantisaatio- (LVQ) luokittelijat. Edellä mainittujen muutosten käyttöönoton avulla parantuneen viiluarkin onnistunut laadutus tuo kustannussäästöjä yritykselle sekä viiluarkkien paremman hyväksikäytön että viilun jatkokäsittelyssä säästyvän työmäärän avulla.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The number of digital images has been increasing exponentially in the last few years. People have problems managing their image collections and finding a specific image. An automatic image categorization system could help them to manage images and find specific images. In this thesis, an unsupervised visual object categorization system was implemented to categorize a set of unknown images. The system is unsupervised, and hence, it does not need known images to train the system which needs to be manually obtained. Therefore, the number of possible categories and images can be huge. The system implemented in the thesis extracts local features from the images. These local features are used to build a codebook. The local features and the codebook are then used to generate a feature vector for an image. Images are categorized based on the feature vectors. The system is able to categorize any given set of images based on the visual appearance of the images. Images that have similar image regions are grouped together in the same category. Thus, for example, images which contain cars are assigned to the same cluster. The unsupervised visual object categorization system can be used in many situations, e.g., in an Internet search engine. The system can categorize images for a user, and the user can then easily find a specific type of image.