999 resultados para kinetic dissolution


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of powdered cobalt ferrites, CoxFe3-xO4 with 0.66 <= x< 1.00 containing different amounts of Fe-II, were synthesized by a mild procedure, and their Fe and Co site occupancies and structural characteristics were explored using X-ray anomalous scattering and the Rietveld refinement method. The dissolution kinetics, measured in 0.1 M oxalic acid aqueous solution at 70 degrees C, indicate in all cases the operation of a contracting volume rate law. The specific rates increased with the Fell content following approximately a second-order polynomial expression. This result suggests that the transfer of Fe-III controls the dissolution rate, and that the leaching of a first layer of ions Co-II and Fe-II leaves exposed a surface enriched in slower dissolving octahedral Fe-III ions. Within this model, inner vicinal lattice Fe-II accelerates the rate of Fe-III transfer via internal electron hopping. A chain mechanism, involving successive electron transfers, fits the data very well. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dissolution, accompanied by chemical reaction, of monodisperse solid particles has been analysed. The resulting model, which accounts for the variation of mass transfer coefficient with the size of the dissolving particles, yields an approximate analytical form of a kinetic function. Rigorous numerical and approximate analytical solutions have been obtained for the governing system of nonlinear ordinary differential equations. The transient nature of the dissolution process as well as the accuracy of the analytical solution is brought out by the rigorous numerical solution. The analytical solution is fairly accurate for the major part of the range of operational times encountered in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deterministic synthesis of self-organized quantum dot arrays for renewable energy, biomedical, and optoelectronic applications requires control over adatom capture zones, which are presently mapped using unphysical geometric tessellation. In contrast, the proposed kinetic mapping is based on simulated two-dimensional adatom fluxes in the array and includes the effects of nucleation, dissolution, coalescence, and process parameters such as surface temperature and deposition rate. This approach is generic and can be used to control the nanoarray development in various practical applications. © 2009 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of reductive dissolution of NaBiO3, by Mn-II and Ce-III ions are studied as a function of [Mn-II] or [Ce-III], [Bi-III], [H+] and temperature. They fit a simple inverse-cubic rate law and can be readily interpreted using a mechanism in which the rate-determining step is the reaction between an adsorbed reducing species (i.e. a Mn-II or Ce-III ion) and its associated surface site; protonation of the surface site promotes the rate of reaction. The rate of dissolution decreases with increasing initial concentration of Bi-III ions owing to competitive inhibition by the latter species. A kinetic model, based on this mechanism, is applied and provides a quantitative description of the observed kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of oxidative dissolution of a number of different samples of chromium(III) oxide by periodate ions in 1 mol dm-3 HClO4 solution have been studied and the results interpreted using the inverse-cubic rate law. The metaperiodate acts as a two-electron oxidant and the overall reaction stoichiometry involves the reaction of 3 mol of periodate with 1 mol of Cr(III) oxide. From a detailed study of the kinetics of dissolution the rate-determining step appears to be the reaction between an adsorbed periodate ion and its associated Cr(III) oxide surface site, with inhibition by one of the reaction products, iodate, through competitive adsorption. Analysis of the kinetic data generates values for the Langmuir adsorption coefficients for periodate and iodate ions on highly hydrated Cr(III) oxide of 84 +/- 8 and 2600 +/- 370 dm3 mol-1, respectively. The Cr(III) oxide-periodate reaction has a high overall activation energy, 82 +/- 6 kJ mol-1. The kinetics of dissolution of highly hydrated Cr(III) oxide under conditions in which the simple inverse-cubic rate law function does not apply can be successfully predicted using a simple kinetic model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of a kinetic study of the oxidative dissolution of ruthenium dioxide hydrate to ruthenium tetroxide by periodate ions, IO4-, in acidic solution are described. The kinetics of dissolution give a good fit to a 'soft-centre' model in which the particles of RuO2.xH2O are assumed to be monodispersed, spherical but inhomogeneous in composition, comprising a difficult-to-corrode outer shell and a more easy-to-corrode inner core. In this work metaperiodate appears to act as a two-electron oxidant. The observed kinetics fit a reaction scheme in which the rate-determining step is the reaction between a surface site and an adsorbed IO4 ion and there is competitive adsorption by any IO3- present. In the absence and presence of an excess of IO3- ions, the overall activation energy for the corrosion reaction was determined to be 38 +/- 2 and 54 +/- 4 kJ mol-1, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of continuous sonication and presonication on the kinetics of oxidative dissolution of ruthenium dioxide hydrate by bromate ions under acidic conditions are reported. Compared with unsonicated and presonicated dispersions the overall rate of dissolution of continuously sonicated dispersions is significantly greater due to a reduction in the average particle size and, hence, an increase in the specific surface area. Powder dispersions subjected to continuous ultrasound and presonication exhibit an initial induction period in their corrosion kinetics; the length of this induction period increases with increasing presonication. This corrosion feature is retained in the dissolution kinetics of powder samples which have been subjected to pre-ultrasound, but which are then stirred during the dissolution process. It is believed that this apparent permanent change in the nature of the powder particles is due to the ultrasound induced formation of a very thin layer of a largely unreactive form of ruthenium dioxide (possibly due to partial dehydration) on the surface of the powder particles. A kinetic scheme, based on this model, is used to account for the observed kinetics of dissolution of RuO2 . xH2O which have been subjected to both continuous sonication and presonication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study dissolution tests and thermoanalytical (TA) techniques were applied to metronidazole tablets from five laboratories (R, G, SA, SB, SC) available on the Brazilian market. The TA profiles indicated that in some formulations interactions between components led to eutectic products with lower melting points than metronidazole. The formulations SB and SC showed dissolution profiles that did not agree with published standards, confirming the TA results. All dissolution data were mathematically compared with kinetic models of release, demonstrating the main release mechanism was first order in all the tablets. The formulations were statistically compared by ANOVA and post-hoc tests (Tukey and Newman-Keuls), reveling significant differences in dissolution efficiency (DE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The acid and ultrasound catalyzed hydrolysis of solventless TEOS-water mixtures are studied, as a function of the initial additions of ethanol to the mixtures, by means of flux calorimetry measurements. A device was specially designed for this purpose. Under acid conditions, our proposed method has been able to resolve hydrolysis from other condensation reactions, by detecting the exothermal hydrolysis reaction heat. The process has been explained by a dissolution and reaction mechanism. Ultrasound forces the dissolution process to start the reaction. The alcohol produced in the reaction helps the dissolution process to further enhance the hydrolysis. Initial amounts of pure ethanol added to the mixtures shorten the start time of the reaction, due to an additional effect of dissolution, and diminish the reaction rate, as a result of the solvent dilution effect. Our dissolution and reaction mechanism modeling describes the main points arising from the experimental data and yields k(H) = 0.24 M(-1) min(-1) for the second-order hydrolysis rate constant at 39 degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A kinetic study of the ultrasound-stimulated and acid-catalyzed sonohydrolysis of tetraethyl orthosilicate (TEOS) in solventless TEOS-water heterogeneous mixtures was carried out by means of a calorimetric method as a function of the ultrasound power. The hydrolysis reaction starts in acidulated heterogeneous water-TEOS mixtures after an induction period under ultrasonic stimulation. The ultrasound power seems to play a role on the dynamical coupling of the system originating a continuum upward shifting of the base line during the induction period of sonication. The rate in which the base line is upward shifted diminishes with the power. The best coupling between the ultrasound and the reactant heterogeneous mixtures for this experimental setup was found to occur at 50 W, for which the gelation time was found to be a minimum. The kinetics of the heterogeneous TEOS sonohydrolysis was studied on the basis of a dissolution and reaction modeling. The heterogeneous reaction pathway as deduced from the kinetic study was drawn in a ternary diagram as a function of the ultrasound power. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of porosity due to dissolution/precipitation processes of minerals and the associated change of transport parameters are of major interest for natural geological environments and engineered underground structures. We designed a reproducible and fast to conduct 2D experiment, which is flexible enough to investigate several process couplings implemented in the numerical code OpenGeosys-GEM (OGS-GEM). We investigated advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. In addition, the system allowed to investigate the influence of microscopic (pore scale) processes on macroscopic (continuum scale) transport. A Plexiglas tank of dimension 10 × 10 cm was filled with a 1 cm thick reactive layer consisting of a bimodal grain size distribution of celestite (SrSO4) crystals, sandwiched between two layers of sand. A barium chloride solution was injected into the tank causing an asymmetric flow field to develop. As the barium chloride reached the celestite region, dissolution of celestite was initiated and barite precipitated. Due to the higher molar volume of barite, its precipitation caused a porosity decrease and thus also a decrease in the permeability of the porous medium. The change of flow in space and time was observed via injection of conservative tracers and analysis of effluents. In addition, an extensive post-mortem analysis of the reacted medium was conducted. We could successfully model the flow (with and without fluid density effects) and the transport of conservative tracers with a (continuum scale) reactive transport model. The prediction of the reactive experiments initially failed. Only the inclusion of information from post-mortem analysis gave a satisfactory match for the case where the flow field changed due to dissolution/precipitation reactions. We concentrated on the refinement of post-mortem analysis and the investigation of the dissolution/precipitation mechanisms at the pore scale. Our analytical techniques combined scanning electron microscopy (SEM) and synchrotron X-ray micro-diffraction/micro-fluorescence performed at the XAS beamline (Swiss Light Source). The newly formed phases include an epitaxial growth of barite micro-crystals on large celestite crystals (epitaxial growth) and a nano-crystalline barite phase (resulting from the dissolution of small celestite crystals) with residues of celestite crystals in the pore interstices. Classical nucleation theory, using well-established and estimated parameters describing barite precipitation, was applied to explain the mineralogical changes occurring in our system. Our pore scale investigation showed limits of the continuum scale reactive transport model. Although kinetic effects were implemented by fixing two distinct rates for the dissolution of large and small celestite crystals, instantaneous precipitation of barite was assumed as soon as oversaturation occurred. Precipitation kinetics, passivation of large celestite crystals and metastability of supersaturated solutions, i.e. the conditions under which nucleation cannot occur despite high supersaturation, were neglected. These results will be used to develop a pore scale model that describes precipitation and dissolution of crystals at the pore scale for various transport and chemical conditions. Pore scale modelling can be used to parameterize constitutive equations to introduce pore-scale corrections into macroscopic (continuum) reactive transport models. Microscopic understanding of the system is fundamental for modelling from the pore to the continuum scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of an adjuvant to a pesticide usually occurs in a mix-tank, before spray application to the crop. Their interaction is potentially crucial to overall efficacy but has received little attention from a physical-chemical perspective. Study was undertaken by laser diffraction, Raman spectroscopy, and small-angle X-ray scattering to resolve these physical processes. It was shown that migration of the pesticide into the adjuvant droplet occurred in all cases studied. The level of transfer was dependent upon adjuvant level, adjuvant solubility, and surfactant level. For suspension pesticides, dissolution of crystallites within the droplet occurred to a degree limited by solubility. The results directly demonstrate the transfer of the pesticide into the adjuvant carrier. This indicates that for emulsion-based pesticides, application to the target is likely as a homogeneously mixed droplet, whereas for suspension pesticides, solubility may limit transfer and dissolution, leading to heterogeneity in the applied particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Release of uranium from Na-autunite, an artificial mineral created as a result of polyphosphate injection in the subsurface at the DOE Hanford Site, takes place during slow dissolution of the mineral structure. Stability information of the uranyl-phosphate phases is limited to conditions involving pH, temperature, and a few aqueous organic materials. The carbonate ion, which creates very strong complexes with uranium, is the predominant ion in the groundwater composition. The polyphosphate technology with the formation of autunite was identified as the most feasible remediation strategy to sequester uranium in contaminated groundwater and soil in situ. The objectives of the experimental work were (i) to quantify the effect of bicarbonate on the stability of synthetic sodium meta-autunite created as a result of uranium stabilization through polyphosphate injection, (ii) calculate the kinetic rate law parameters of the uranium release from Na-autunite during dissolution, and (iii) to compare the process parameters with those obtained for natural calcium meta-autunite. Experiments were conducted using SPTF apparatus, which consists of syringe pumps for controlling flow rate, Teflon reactors and a heating/cooling system. 0.25 grams of synthetic Na-autunite was placed in the reactor and buffer solutions with varying bicarbonate concentrations (0.0005 to 0.003 M) at different pH (6 - 11) were pumped through the reactors. Experiments were conducted at four different temperatures in the range of 5 - 60oC. It was concluded that the rate of release of uranium from synthetic Na-autunite is directly correlated to the bicarbonate concentration. The rate of release of uranium increased from 1.90 x 10-12 at pH 6 to 2.64 x 10-10 (mol m-2 s-1) at pH 11 at 23oC over the bicarbonate concentration range tested. The activation energy values were invariant with the change in the bicarbonate concentration; however, pH is shown to influence the activation energy values. Uranyl hydroxides and uranyl carbonates complexes helped accelerate the dissolution of autunite mineral.