969 resultados para kinetic constants
Resumo:
Details about the parameters of kinetic systems are crucial for progress in both medical and industrial research, including drug development, clinical diagnosis and biotechnology applications. Such details must be collected by a series of kinetic experiments and investigations. The correct design of the experiment is essential to collecting data suitable for analysis, modelling and deriving the correct information. We have developed a systematic and iterative Bayesian method and sets of rules for the design of enzyme kinetic experiments. Our method selects the optimum design to collect data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. The rules select features of the design such as the substrate range and the number of measurements. We show here that this method can be directly applied to the study of other important kinetic systems, including drug transport, receptor binding, microbial culture and cell transport kinetics. It is possible to reduce the errors in the estimated parameters and, most importantly, increase the efficiency and cost-effectiveness by reducing the necessary amount of experiments and data points measured. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Intact cells from Pseudomonas aeruginosa strain L10 containing amidase were used as biocatalysts both free and immobilized in a reverse micellar system. The apparent kinetic constants for the transamidation reaction in hydroxamic acids synthesis, were determined using substrates such as aliphatic, amino acid and aromatic amides and esters, in both media. In reverse micelles, K-m values decreased 2-7 fold relatively to the free biocatalyst using as substrates acetamide, acrylamide, propionamide and glycinamide ethyl ester. We have concluded that overall the affinity of the biocatalyst to each substrate increases when reactions are performed in the reversed micellar system as opposed to the buffer system. The immobilized biocatalyst in general, exhibits higher stability and faster rates of reactions at lower substrates concentration relatively to the free form, which is advantageous. Additionally, the immobilization revealed to be suitable for obtaining the highest yields of hydroxamic acids derivatives, in some cases higher than 80%. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A sequential batch reactor with suspended biomass and useful volume of 5 L was used in the removal of nutrients and organic matter in workbench scale under optimal conditions obtained by central composite rotational design (CCRD), with cycle time (CT) of 16 h (10.15 h, aerobic phase, and 4.35 h, anoxic phase) and carbon: nitrogen ratio (COD/NO2--N+NO3--N) equal to 6. Complete cycles (20), nitrification followed by denitrification, were evaluated to investigate the kinetic behavior of degradation of organic (COD) and nitrogenated (NH4+-N, NO2--N and NO3--N) matter present in the effluent from a bird slaughterhouse and industrial processing facility, as well as to evaluate the stability of the reactor using Shewhart control charts of individual measures. The results indicate means total inorganic nitrogen (NH4+-N+NO2- -N+NO3--N) removal of 84.32±1.59% and organic matter (COD) of 53.65±8.48% in the complete process (nitrification-denitrification) with the process under statistical control. The nitrifying activity during the aerobic phase estimated from the determination of the kinetic parameters had mean K1 and K2 values of 0.00381±0.00043 min-1 and 0.00381±0.00043 min-1, respectively. The evaluation of the kinetic behavior of the conversion of nitrogen indicated a possible reduction of CT in the anoxic phase, since removals of NO2--N and NO3--N higher than 90% were obtained with only 1 h of denitrification.
Resumo:
This paper sought to evaluate the behavior of an upflow Anaerobic-Aerobic Fixed Bed Reactor (AAFBR) in the treatment of cattle slaughterhouse effluent and determine apparent kinetic constants of the organic matter removal. The AAFBR was operated with no recirculation (Phase I) and with 50% of effluent recirculation (Phase II), with θ of 11h and 8h. In terms of pH, bicarbonate alkalinity and volatile acids, the results indicated the reactor ability to maintain favorable conditions for the biological processes involved in the organic matter removal in both operational phases. The average removal efficiencies of organic matter along the reactor height, expressed in terms of raw COD, were 49% and 68% in Phase I and 54% and 86% in Phase II for θ of 11h and 8h, respectively. The results of the filtered COD indicated removal efficiency of 52% and k = 0.0857h-1 to θ of 11h and 42% and k = 0.0880h-1 to θ of 8h in the Phase I. In Phase II, the removal efficiencies were 59% and 51% to θ of 11h and 8h, with k = 0.1238h-1 and k = 0.1075 h-1, respectively. The first order kinetic model showed good adjustment and described adequately the kinetics of organic matter removal for θ of 11h, with r² equal to 0.9734 and 0.9591 to the Phases I and II, respectively.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The heterogeneously catalyzed transesterification reaction for the production of biodiesel from triglycerides was investigated for reaction mechanism and kinetic constants. Three elementary reaction mechanisms Eley-Rideal (ER), Langmuir-Hinshelwood-Hougen-Watson (LHHW), and Hattori with assumptions, such as quasi-steady-state conditions for the surface species and methanol adsorption, and surface reactions as the rate-determining steps were applied to predict the catalyst surface coverage and the bulk concentration using a multiscale simulation framework. The rate expression based on methanol adsorption as the rate limiting in LHHW elementary mechanism has been found to be statistically the most reliable representation of the experimental data using hydrotalcite catalyst with different formulations. © 2011 American Chemical Society.
Resumo:
The thermal decomposition of a solid recovered fuel has been studied using thermogravimetry, in order to get information about the main steps in the decomposition of such material. The study comprises two different atmospheres: inert and oxidative. The kinetics of decomposition is determined at three different heating rates using the same kinetic constants and model for both atmospheres at all the heating rates simultaneously. A good correlation of the TG data is obtained using three nth-order parallel reactions.
Resumo:
The kinetics of metal uptake by gel and dry calcium alginate beads was analysed using solutions of copper or lead ions. Gel beads sorbed metal ions faster than the dry ones and larger diffusivities of metal ions were calculated for gel beads: approximately 10−4 cm2/min vs. 10−6 cm2/min for dry beads. In accordance, scanning electron microscopy and nitrogen adsorption data revealed a low porosity of dry alginate particles. However, dry beads showed higher sorption capacities and a mechanical stability more suitable for large-scale use. Two sorption models were fitted to the kinetic results: the Lagergren pseudo-first order and the Ho and McKay pseudo-second order equations. The former was found to be the most adequate to model metal uptake by dry alginate beads and kinetic constants in the orders of 10−3 and 10−2 min−1 were obtained for lead solutions with concentrations up to 100 g/m3. The pseudo-first order model was also found to be valid to describe biosorbent operation with a real wastewater indicating that it can be used to design processes of metal sorption with alginate-based materials.
Resumo:
Three technologies were tested (TiO2/UV, H2O2/UV, and TiO2/H2O2/UV) for the degradation and color removal of a 25 mg L-1 mixture of three acid dyes: Blue 9, Red 18, and Yellow 23. A low speed rotating disc reactor (20 rpm) and a H2O2 concentration of 2.5 mmol L-1 were used. The dyes did not significantly undergo photolysis, although they were all degraded by the studied advanced oxidation processes. With the TiO2/H2O2/UV process, a strong synergism was observed (color removal reached 100%). Pseudo first order kinetic constants were estimated for all processes, as well as the respective apparent photonic efficiencies.
Resumo:
The purpose of this work was to determine the safe shelf life of single-base propellants. The kinetic parameters relative to the consumption of the stabilizer diphenylamine (DPA) added to the propellant were determined as a function of the storage and ageing time. High Performance Liquid Chromatography (HPLC) with spectrophotometric detection was used to determine the DPA percentage before and after the artificial ageing at 60, 70 and 80 ºC. The experimental data were very well adjusted to a pseudo-first order kinetic model and the respective kinetic constants are 8.0-10-3 day-1 (60 ºC); 1.9-10-2 day-1 (70 ºC); 1.2-10-1 day-1 (80 ºC). The activation energy was calculated as 130 kJ mol-1 and the half-time for depletion of the DPA at the hypothetical temperature of 40 ºC of storage was estimated as being 6 years.
Resumo:
The objective of this work was to produce an immobilized form of lipase from Burkholderia cepacia (lipase PS) with advantageous catalytic properties and stability to be used in the ethanolysis of different feedstocks, mainly babassu oil and tallow beef. For this purpose lipase PS was immobilized on two different non-commercial matrices, such as inorganic matrix (niobium oxide, Nb(2)O(5)) and a hybrid matrix (polysiloxane-polyvinyl alcohol, SiO(2)-PVA) by covalent binding. The properties of free and immobilized enzymes were searched and compared. The best performance regarding all the analyzed parameters (biochemical properties, kinetic constants and thermal stability) were obtained when the lipase was immobilized on SiO(2)-PVA. The superiority of this immobilized system was also confirmed in the transe-sterification of both feedstocks, attained higher yields and productivities. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees-inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO(3)/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees-inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees-inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3) m(3)). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to determine the best performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) based on the use of four different bed materials as support for biomass immobilization. The bed materials utilized were Polyurethane foam (PU), vegetal carbon (VC), synthetic pumice (SP), and recycled low-density polyethylene (PE). The AnSBBR. with I total volume Of 7.2 L, was operated in 8-h batch cycles over 10 months, and fed with domestic sewage with an average influent chemical oxygen demand (COD) of 358 +/- 110 mg/L. The average effluent COD values were 121 +/- 31, 208 +/- 54, 233 +/- 52, and 227 +/- 51 mg/L. for PU, VC, SP, and PE, respectively. A modified first-order kinetic model was adjusted to temporal profiles of COD during a batch cycle, and the apparent kinetic constants were 0.52 +/- 0.05, 0.37 +/- 0.05, 0.80 +/- 0.04, and 0.30 +/- 0.021h(-1) for PU, VC, SP, and PE, respectively. Specific substrate utilization rates of 1.08, 0.11, and 0.86 mg COD/mg VS day were obtained for PU, VC, and PE, respectively. Although SP yielded the highest kinetic coefficient, PU was considered the best support, since SP presented loss of chemical constituents during the reactor`s operational phase. In addition, findings oil the microbial community were associated with the reactor`s performance data. Although PE did not show a satisfactory performance, an interesting microbial diversity was found oil its surface. Based oil the morphology and denaturing gradient gel electrophoresis (DGGE) results, PE showed the best capacity for promoting the attachment of methanogenic organisms, and is therefore a material that merits further analysis. PU was considered the Most suitable material showing the best performance in terms of efficiency of solids and COD removal. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A fast and direct surface plasmon resonance (SPR) method for the kinetic analysis of the interactions between peptide antigens and immobilised monoclonal antibodies (mAb) has been established. Protocols have been developed to overcome the problems posed by the small size of the analytes (< 1600 Da). The interactions were well described by a simple 1:1 bimolecular interaction and the rate constants were self-consistent and reproducible. The key features for the accuracy of the kinetic constants measured were high buffer flow rates, medium antibody surface densities and high peptide concentrations. The method was applied to an extensive analysis of over 40 peptide analogues towards two distinct anti-FMDV antibodies, providing data in total agreement with previous competition ELISA experiments. Eleven linear 15-residue synthetic peptides, reproducing all possible combinations of the four replacements found in foot-and-mouth disease virus (FMDV) field isolate C-S30, were evaluated. The direct kinetic SPR analysis of the interactions between these peptides and three anti-site A mAbs suggested additivity in all combinations of the four relevant mutations, which was confirmed by parallel ELISA analysis. The four-point mutant peptide (A15S30) reproducing site A from the C-S30 strain was the least antigenic of the set, in disagreement with previously reported studies with the virus isolate. Increasing peptide size from 15 to 21 residues did not significantly improve antigenicity. Overnight incubation of A15S30 with mAb 4C4 in solution showed a marked increase in peptide antigenicity not observed for other peptide analogues, suggesting that conformational rearrangement could lead to a stable peptide-antibody complex. In fact, peptide cyclization clearly improved antigenicity, confirming an antigenic reversion in a multiply substituted peptide. Solution NMR studies of both linear and cyclic versions of the antigenic loop of FMDV C-S30 showed that structural features previously correlated with antigenicity were more pronounced in the cyclic peptide. Twenty-six synthetic peptides, corresponding to all possible combinations of five single-point antigenicity-enhancing replacements in the GH loop of FMDV C-S8c1, were also studied. SPR kinetic screening of these peptides was not possible due to problems mainly related to the high mAb affinities displayed by these synthetic antigens. Solution affinity SPR analysis was employed and affinities displayed were generally comparable to or even higher than those corresponding to the C-S8c1 reference peptide A15. The NMR characterisation of one of these multiple mutants in solution showed that it had a conformational behaviour quite similar to that of the native sequence A15 and the X-ray diffraction crystallographic analysis of the peptide ? mAb 4C4 complex showed paratope ? epitope interactions identical to all FMDV peptide ? mAb complexes studied so far. Key residues for these interactions are those directly involved in epitope ? paratope contacts (141Arg, 143Asp, 146His) as well as residues able to stabilise a particular peptide global folding. A quasi-cyclic conformation is held up by a hydrophobic cavity defined by residues 138, 144 and 147 and by other key intrapeptide hydrogen bonds, delineating an open turn at positions 141, 142 and 143 (corresponding to the Arg-Gly-Asp motif).
Resumo:
The immobilized glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor was used to convert D-glucose into D-glucosone at moderate pressures, up to 150 bar, with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, different forms of immobilized biocatalysts, glucose concentration, pH, temperature and the presence of catalase. Glucose 2-oxidase (GOX2) was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. Purified enzyme and catalase were immobilized into a polyethersulfone (PES) membrane in the presence of glutaraldehyde and gelatin. Enhancement of the bioconversion of D-glucose was done by the pressure since an increase in the pressure with compressed air increases the conversion rates. The optimum temperature and pH for bioconversion of D-glucose were found to be 62 degrees C and pH 6.0, respectively and the activation energy (E(a)) was 28.01 kJ mol(-1). The apparent kinetic constants (V(max)' K(m)', K(cat)' and K(cat)/K(m)') for this bioconversion were 2.27 U mg(-1) protein, 11.15 mM, 8.33 s(-1) and 747.38 s(-1) M(-1), respectively. The immobilized biomass of C. versicolor as well as crude extract containing GOX2 activity were also useful for bioconversion of D-glucose at 65 bar with a yield of 69.9 +/- 3.8% and 91.3 +/- 1.2%, respectively. The immobilized enzyme was apparently stable for several months without any significant loss of enzyme activity. On the other hand, this immobilized enzyme was also stable at moderate pressures, since such pressures did not affect significantly the enzyme activity. (C) 2010 Elsevier Ltd. All rights reserved.