998 resultados para karyotypic evolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The muntjacs (Muntiacus, Cervidae) are famous for their rapid and radical karyotypic diversification via repeated tandem chromosome fusions, constituting a paradigm for the studies of karyotypic evolution. Of the five muntjac species with defined karyotyp

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross- species chromosome painting has made a great contribution to our understanding of the evolution of karyotypes and genome organizations of mammals. Several recent papers of comparative painting between tree and flying squirrels have shed some light

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bats are a unique but enigmatic group of mammals and have a world-wide distribution. The phylogenetic relationships of extant bats are far from being resolved. Here, we investigated the karyotypic relationships of representative species from four families

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The karyotype of Indian muntjacs (Muntiacus muntjak vaginalis) has been greatly shaped by chromosomal fusion, which leads to its lowest diploid number among the extant known mammals. We present, here, comparative results based on draft sequences of 37 bac

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astyanax scabripinnis has been considered a species complex because it presents high karyotypic and morphological variability among its populations. In this work, individuals of two A. scabripinnis populations from different streams in the same hydrographic basin were analyzed through C-banding and AgNOR. Although they present distinct diploid numbers, they show meta and submetacentric chromosome groups highly conserved (numerically and morphologically). Other chromosomal characteristics are also shared by both populations, as the pattern of constitutive heterochromatin distribution (large blocks in the telomeric regions of subtelocentric and acrocentric chromosomes) and some nucleolar chromosomes. Inter-individual variations both in the number and size of heterochromatic blocks, and in the number and localization of NORs were verified in the studied populations, characterizing them as polymorphics for these regions. The mechanisms involved in the dispersion of heterochromatin and NORs through the karyotypes, as well as the possible events related to the generation of polymorphism of those regions are discussed. Furthermore, relationships between these populations and within the context of the scabripinnis complex are also approached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Domestic buffaloes are divided into two group based on cytogenetic characteristics and habitats: the “river buffaloes” with 2n = 50 and the “swamp buffaloes”, 2n = 48. Nevertheless, their hybrids are viable, fertile and identified by a 2n = 49. In order to have a better characterization of these different cytotypes of buffaloes, and considering that NOR-bearing chromosomes are involved in the rearrangements responsible for the karyotypic differences, we applied silver staining (Ag-NOR) and performed fluorescent in situ hybridization (FISH) experiments using 18S rDNA as probe. Metaphases were obtained through blood lymphocyte culture of 21 individuals, including river, swamp and hybrid cytotypes. Ag-NOR staining revealed active NORs on six chromosome pairs (3p, 4p, 6, 21, 23, 24) in the river buffaloes, whereas the swamp buffaloes presented only five NOR-bearing pairs (4p, 6, 20, 22, 23). The F1 crossbreed had 11 chromosomes with active NORs, indicating expression of both parental chromosomes. FISH analysis confirmed the numerical divergence identified with Ag-NOR. This result is explained by the loss of the NOR located on chromosome 4p in the river buffalo, which is involved in the tandem fusion with chromosome 9 in this subspecies. A comparison with the ancestral cattle karyotype suggests that the NOR found on the 3p of the river buffalo may have originated from a duplication of ribosomal genes, resulting in the formation of new NOR sites in this subspecies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Complete sets of chromosome-specific painting probes, derived from flow-sorted chromosomes of human (HSA), Equus caballus (ECA) and Equus burchelli (EBU) were used to delineate conserved chromosomal segments between human and Equits burchelli, and among four equid species, E. przewalskii (EPR), E. caballus, E. burchelli and E. zebra hartmannae (EZH) by cross-species chromosome painting. Genome-wide comparative maps between these species have been established. Twenty-two human autosomal probes revealed 48 conserved segments in E. burchelli. The adjacent segment combinations HSA3/21, 7/16p, 16q/19q, 14/15, 12/22 and 4/8, presumed ancestral syntenies for all eutherian mammals, were also found conserved in E. burchelli. The comparative maps of equids allow for the unequivocal characterization of chromosomal rearrangements that differentiate the karyotypes of these equid species. The karyotypes of E. przewalskii and E. caballus differ by one Robertsonian translocation (ECA5 = EPR23 + EPR24); numerous Robertsonian translocations and tandem fusions and several inversions account for the karyotypic differences between the horses and zebras. Our results shed new light on the karyotypic evolution of Equidae. Copyright (C) 2003 S. Karger AG, Basel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rhinolophus (Rhinolophidae) is the second most speciose genus in Chiroptera and has extensively diversified diploid chromosome numbers (from 2n=28 to 62). In spite of many attempts to explore the karyotypic evolution of this genus, most studies have been

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Indian muntjac (Muntiacus muntjak vaginalis) has a karyotype of 2n=6 in the female and 7 in the male, the karyotypic evolution of which through extensive tandem fusions and several centric fusions has been well-documented by recent molecular cytogenetic studies. In an attempt to define the fusion orientations of conserved chromosomal segments and the molecular mechanisms underlying the tandem fusions, we have constructed a highly redundant (more than six times of whole genome coverage) bacterial artificial chromosome (BAC) library of Indian muntjac. The BAC library contains 124,800 clones with no chromosome bias and has an average insert DNA size of 120 kb. A total of 223 clones have been mapped by fluorescent in situ hybridization onto the chromosomes of both Indian muntjac and Chinese muntjac and a high-resolution comparative map has been established. Our mapping results demonstrate that all tandem fusions that occurred during the evolution of Indian muntjac karyotype from the acrocentric 2n=70 hypothetical ancestral karyotype are centromere-telomere (head-tail) fusions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fishes of the subfamily Hypoptopomatinae are very common and found in the lowlands of cis-Andean South America from Venezuela to the north of Argentina. With the main objective of contributing for a better understanding of the importance of chromosome rearrangements in the loricariid evolution, cytogenetic analyses were conducted in nine species of Hypoptopomatinae. The results showed a marked gross karyotypic conservation with the presence of 2n=54 chromosomes in all species analyzed. The main differences were found in the karyotypic formulae level. Most species had a single interstitial Ag-NORs, however terminal Ag-NORs were observed in three species. One species exhibited two Ag-NOR-bearing chromosome pairs. The distribution of C-band positive segments was species specific but chromosome markers were observed among the species analyzed. The gross cytogenetic characteristics observed among the Hypoptopomatinae species are similar to those observed in other primitive Loricariidae species suggesting that small changes, mainly paracentric and pericentric inversion were the main events in the karyotypic evolution of this fish group.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cichlids are important in the aquaculture and ornamental fish trade and are considered models for evolutionary biology. However, most studies of cichlids have investigated African species, and the South American cichlids remain poorly characterized. Studies in neotropical regions have focused almost exclusively on classical cytogenetic approaches without investigating physical chromosomal mapping of specific sequences. The aim of the present study is to investigate the genomic organization of species belonging to different tribes of the subfamily Cichlinae (Cichla monoculus, Astronotus ocellatus, Geophagus proximus, Acaronia nassa, Bujurquina peregrinabunda, Hoplarchus psittacus, Hypselecara coryphaenoides, Hypselecara temporalis, Caquetaia spectabilis, Uaru amphiacanthoides, Pterophyllum leopoldi, Pterophyllum scalare, and Symphysodon discus) and reexamine the karyotypic evolutionary patterns proposed for this group. Variations in some cytogenetic markers were observed, although no trends were found in terms of the increase, decrease, or maintenance of the basal diploid chromosome number 2n = 48 in the tribes. Several species were observed to have 18S rDNA genetic duplications, as well as multiple rDNA loci. In most of the taxa analyzed, the 5S rDNA was located in the interstitial region of a pair of homologous chromosomes, although variations from this pattern were observed. Interstitial telomere sites were also observed and appear to be involved in chromosomal rearrangement events and the accumulation of repeat-rich satellite DNA sequences. Our data demonstrated the karyotypic diversity that exists among neotropical cichlids, suggesting that most of this diversity is due to the repetitive sequences present in heterochromatic regions and that repeat sequences have greatly influenced the karyotypic evolution of these fishes. © 2012 Springer Science+Business Media B.V.