9 resultados para kaasut


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selostus: Hiilidioksidin kulku lumipeitteisessä ja paljaassa maassa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ilmakehän hiukkaset aiheuttavat merkittäviä ympäristö- ja terveyshaittoja, joihin vaikuttaa hiukkasten kemiallinen koostumus. Hiukkasten kemiallisesta koostumuksesta voidaan hankkia tietoa hiukkasmittauksilla. Työn tavoitteena oli rakentaa jatkuvatoiminen mittausjärjestelmä, jolla voidaan mitata ilmakehän aerosolihiukkasten ionipitoisuuksia. Mittausjärjestelmä koostuu virtuaali-impaktorista, denuderputkista, PILS-laitteesta ja ionikromatografista. Näyteilmavirtaus kulkee ensin esierottimena toimivan virtuaali-impaktorm lävitse, joka poistaa aerodynaamiselta halkaisijaltaan 1,3 um:a suuremmat hiukkaset ilmavirtauksesta. Näyte, joka sisältää 1,3 um:a pienemmät hiukkaset kulkee virtuaali-impaktorin jälkeen kahden 1 % KOH-liuoksella käsitellyn denuderputken lävitse, joilla poistetaan hiukkasmääritystä häiritsevät happamat kaasut näytevirtauksesta. Denuderputkien jälkeen ilmavirtaus saapuu PILS-laitteeseen, jossa hiukkaset kasvatetaan vesihöyryn avulla aerosolipisaroiksi, törmäytetään keräyslevyyn ja sekoitetaan sen jälkeen sisäistä standardiainetta (NaBr) sisältavään kuljetusliuokseen. Kuljetusliuoksen ja aerosolipisaroiden seoksesta koostuva näyteliuos johdetaan PILS-laitteesta ionikromatografille analysoitavaksi. Mittausjärjestelmään liitetyllä ionikromatografilla voidaan analysoida neljä näytetta tunnissa. Näytteistä määritettävät anionit olivat sulfaatti, nitraatti ja kloridi. PILS-mittausjärjestelmää testattiin keräämällä hiukkasnäytteitä samanaikaisesti PILS-laitteella sekä virtuaali-impaktorilla tai suodatinkeräimellä ja vertaamalla saatuja aerosolihiukkasten sulfaattipitoisuuksia keskenään. Testeissa kerättiin joko VOAG-laitteella tuotettuja ammoniumsulfaattihiukkasia tai laboratorion huoneilmaa. PILS-mittausjärjestelmällä mitatut sulfaattipitoisuudet olivat 2-20 % pienempia kuin suodatinkeraimella mitatut, kun kerättiin keinotekoisesti tuotettuja ammoniumsulfaattihiukkasia. Huoneilmaa kerättäessä PILS-mittausjärjestelmällä saadut pitoisuudet olivat noin 10 % pienempiä kuin suodatinkeräystulokset. Koetulokset osoittivat, että mittausjärjestelmällä saadaan analysoiduksi luotettavasti hiukkasten sulfaattipitoisuudet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the primary goals for food packages is to protect food against harmful environment, especially oxygen and moisture. The gas transmission rate is the total gas transport through the package, both by permeation through the package material and by leakage through pinholes and cracks. The shelf life of a product can be extended, if the food is stored in a gas tight package. Thus there is a need to test gas tightness of packages. There are several tightness testing methods, and they can be broadly divided into destructive and nondestructive methods. One of the most sensitive methods to detect leaks is by using a non destructive tracer gas technique. Carbon dioxide, helium and hydrogen are the most commonly used tracer gases. Hydrogen is the lightest and the smallest of all gases, which allows it to escape rapidly from the leak areas. The low background concentration of H2 in air (0.5 ppm) enables sensitive leak detection. With a hydrogen leak detector it is also possible to locate leaks. That is not possible with many other tightness testing methods. The experimental work has been focused on investigating the factors which affect the measurement results with the H2leak detector. Also reasons for false results were searched to avoid them in upcoming measurements. From the results of these experiments, the appropriate measurement practice was created in order to have correct and repeatable results. The most important thing for good measurement results is to keep the probe of the detector tightly against the leak. Because of its high diffusion rate, the HZ concentration decreases quickly if holding the probe further away from the leak area and thus the measured H2 leaks would be incorrect and small leaks could be undetected. In the experimental part hydrogen, oxygen and water vapour transmissions through laser beam reference holes (diameters 1 100 μm) were also measured and compared. With the H2 leak detector it was possible to detect even a leakage through 1 μm (diameter) within a few seconds. Water vapour did not penetrate even the largest reference hole (100 μm), even at tropical conditions (38 °C, 90 % RH), whereas some O2 transmission occurred through the reference holes larger than 5 μm. Thus water vapour transmission does not have a significant effect on food deterioration, if the diameter of the leak is less than 100 μm, but small leaks (5 100 μm) are more harmful for the food products, which are sensitive to oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An improved defoamer dosage procedure and a more efficient dosing point to the approach system were studied in this thesis. Their influence on paper machine wet end operations was investigated. The improved defoamer dosing procedure was examined at UMP-Kymmene Tervasaari PM8. Air content and its controlling methods at the paper machine were studied in the literature survey. Also the influence of dissolved gases and entrained air in the papermaking furnish were introduced. Feeding methods – a TrumpJet chemical mixer and traditional feeding devices – were reviewed. The defoamer’s functioning methods were studied. The influence of the use of defoamers was estimated based on the main selected wet end operations. In the experimental part, defoamer mixing with a traditional feeding method and two improved mixing stages were compared based on the air content profiles in PM8’s approach system. The reference dosage procedure was PM8’s old dosing system. The first dosage procedure in the comparison involved two TrumpJet chemical mixers installed on the bottom wire trays. The second element of comparison involved the improvement brought by a third TrumpJet chemical mixer installed on the top wire tray. This second comparison of the efficient defoamer feeding concept was made at a higher production speed of PM8. The air content control situation was also studied at the higher production speed. In addition the connection between the defoamer and air content was observed and a mill-scale system was studied. The economical benefits of the new dosing procedure were also reviewed. Air content profiles of short circulation were measured in the reference situation and the two comparison points of the study. These air content measurements proved the main gas load is introduced to PM8's paper furnish from the white water tray. Thick stock air content was not essential when the air volume flow was considered. The improved defoamer dosing procedure made lower dosage amounts possible. Compared with the traditional feeding system, the new defoamer feeding concept made only few direct improvements to the wet end operations and the produced paper itself. The lower defoamer need was noticed to have a positive influence on hydrophobic sizing and paper defects. The surfaces of the white water tanks and the operation of pumps were assessed based on the density variations of the suspension. The temperature in the white water silo was stated to have a significant influence on the air content measured in the first centrifugal cleaning stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is made as a part of the Chembaltic (Risks of Maritime Transportation of Chemicals in Baltic Sea) project which gathers information on the chemicals transported in the Baltic Sea. The purpose of this study is to provide an overview of handling volumes of liquid bulk chemicals (including liquefied gases) in the Baltic Sea ports and to find out what the most transported liquid bulk chemicals in the Baltic Sea are. Oil and oil products are also viewed in this study but only in a general level. Oils and oil products may also include chemical-related substances (e.g. certain bio-fuels which belong to MARPOL annex II category) in some cargo statistics. Chemicals in packaged form are excluded from the study. Most of the facts about the transport volumes of chemicals presented in this study are based on secondary written sources of Scandinavian, Russian, Baltic and international origin. Furthermore, statistical sources, academic journals, periodicals, newspapers and in later years also different homepages on the Internet have been used as sources of information. Chemical handling volumes in Finnish ports were examined in more detail by using a nationwide vessel traffic system called PortNet. Many previous studies have shown that the Baltic Sea ports are annually handling more than 11 million tonnes of liquid chemicals transported in bulk. Based on this study, it appears that the number may be even higher. The liquid bulk chemicals account for approximately 4 % of the total amount of liquid bulk cargoes handled in the Baltic Sea ports. Most of the liquid bulk chemicals are handled in Finnish and Swedish ports and their proportion of all liquid chemicals handled in the Baltic Sea is altogether over 50 %. The most handled chemicals in the Baltic Sea ports are methanol, sodium hydroxide solution, ammonia, sulphuric and phosphoric acid, pentanes, aromatic free solvents, xylenes, methyl tert-butyl ether (MTBE) and ethanol and ethanol solutions. All of these chemicals are handled at least hundred thousand tonnes or some of them even over 1 million tonnes per year, but since chemical-specific data from all the Baltic Sea countries is not available, the exact tonnages could not be calculated in this study. In addition to these above-mentioned chemicals, there are also other high volume chemicals handled in the Baltic Sea ports (e.g. ethylene, propane and butane) but exact tonnes are missing. Furthermore, high amounts of liquid fertilisers, such as solution of urea and ammonium nitrate in water, are transported in the Baltic Sea. The results of the study can be considered indicative. Updated information about transported chemicals in the Baltic Sea is the first step in the risk assessment of the chemicals. The chemical-specific transportation data help to target hazard or e.g. grounding/collision risk evaluations to chemicals that are handled most or have significant environmental hazard potential. Data gathered in this study will be used as background information in later stages of the Chembaltic project when the risks of the chemicals transported in the Baltic Sea are assessed to highlight the chemicals that require special attention from an environmental point of view in potential marine accident situations in the Baltic Sea area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

kuv., 11 x 17 cm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kemiallisten aseita on käytetty jo ensimmäisestä maailmansodasta lähtien. Viimeaikaiset tapahtumat mm. Syyriassa (Damaskos, elokuu 2013) ovat uudelleen herättäneet pelon näitä aseita kohtaan, joten uhka niiden käytölle on siis todellinen. Näin ollen myös tarve hyvälle ja luotettavalle keinolle niiden käytön ilmaisuun sekä tunnistamiseen on ajankohtainen. Tässä tutkimuksessa tutkitaan Puolustusvoimien taisteluaineiden tunnistamiseen käyttämiä välineitä ja niiden luotettavuutta. Tutkimuksen tavoitteena on kertoa, että kuinka luotettavaa tietoa Puolustusvoimien taisteluaineiden tunnistamiseen käyttämät välineet antavat. Tutkimuksen pääasiallisena tutkimusmenetelmänä käytetään kirjallisuustutkimusta. Tutkimuksen lähteinä käytetään alan kirjallisuutta, kuten käsikirjoja (mm. Suojelun käsikirja, Handbook of Chemical Warfare and Terrorism), tieteellisiä artikkeleita ja julkaisuja sekä Internet-lähteitä, kuten IHS Jane’sin artikkeleita ja Wikipediaa. Tutkimuksen tuloksien mukaan taisteluaineiden tunnistaminen kenttäkäyttöisin laittein on haastavaa. Ongelmia välineiden luotettavalle ilmaisulle tuottavat (käytetystä tekniikasta riippuen) esimerkiksi ilmankosteus, useiden kemikaalien yhtäaikainen käyttö ja kentällä normaalisti esiintyvät kaasut, kuten savut ja pakokaasut. Ongelmina voi esiintyä esimerkiksi vääriä positiivisia ilmaisuja, ilmaisu ilman aineen tunnistamista tai jopa vääriä negatiivisia ilmaisuja eli ilmaisun pois jäämistä kokonaan. Tutkimuksen johtopäätöksinä voidaan esittää, että varmaan tunnistukseen ja luotettaviin tuloksiin voidaan päästä ainoastaan laboratoriolaitteita käyttäen. Kenttäkäyttöisillä välineillä voidaan kuitenkin saada suuntaa antavaa tietoa taisteluaineiden käytöstä ja niiden avulla on myös mahdollista varmentaa muilla tavoilla tehtyjä havaintoja. Varmimmin ilmaisun saa infrapuna-aluetta käyttävillä ilmaisulaitteilla, koska se on käytetyistä menetelmistä häiriöille epäherkin. Ioniliikkuvuuteen perustuvat ilmaisuvälineet ovat herkkiä esimerkiksi ilmankosteudelle ja pakokaasuille, mutta niiden luotettavuutta pystytään parantamaan käyttämällä ilmankuivaimia tai kosteusantureita. Myös laserspektrometriaa käyttävien välineiden ilmaisukyky on havaittu luotettavaksi. Lopuksi voidaan todeta, että kentällä käytettävien välineiden ilmaisu on aina hyvä tarkastuttaa viemällä ilmaisun antaneesta aineesta näytteet esimerkiksi kenttälaboratorioon, omantoimen ohella toimivaan laboratorioon tai vastaavaan, jotta käytetty aine voidaan varmuudella tunnistaa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PPOOLEX-laboratoriokoelaitteistolla tutkitaan höyryn lauhtumiseen liittyviä ilmiöitä Lappeenrannan teknillisen yliopiston Ydinturvallisuuden tutkimusyksikössä. Laitteiston pääkomponentti on sylinterin muotoinen pystysäiliö, joka täytetään kokeita varten osittain vesijohtovedellä. Tehokkaiden laboratoriokokeiden mahdollistamiseksi säiliön veteen liuenneet kaasut on poistettava. Kaasunpoisto toteutetaan Airsepex 4.2 -vedenkäsittelylaitteistolla, joka on liitetty erillisellä kiertopiirillä PPOOLEX-laitteistoon. Tämän kandidaatintyön tavoitteena on esitellä aineensiirron ja kaasunpoiston keskeisiä ilmiöitä PPOOLEX-käytössä. Työn teoriaosan tavoitteena on myös luoda yksinkertainen matemaattinen malli, jonka avulla voidaan mallintaa veden kaasupitoisuutta koelaitteistossa. Työn kokeellisessa osassa tehtiin laboratoriomittaukset, joissa määritetään veden kaasupitoisuuden muutos ajan suhteen. Tehtyihin laboratoriomittauksiin liittyi useita epävarmuuksia, joiden takia saatuihin mittaustuloksiin on syytä suhtautua hyvin kriittisesti. Matemaattinen malli vastasi mittaustuloksia kaasunpoistolaitteiston sammutuksen jälkeen. Kaasunpoistolaitteiston ollessa käytössä matemaattisen mallin tulokset kuitenkin eroavat merkittävästi mittaustuloksista. Erot tuloksissa johtuvat mittauksiin liittyvistä epävarmuuksista sekä matemaattisen mallin oletuksista ja yksinkertaistuksista. PPOOLEX-säiliön vettä ei saada käytetyllä kaasunpoistolaitteistolla täysin kaasuttomaksi. Vielä ei ole varmuutta siitä, saadaanko veden kaasupitoisuus riittävän matalaksi laboratoriokokeita varten.