1000 resultados para juxtaglomerular cell
Resumo:
The juxtaglomerular cell tumor is a cause of secondary hypertension in adults. A 35-year-old female patient suffering from hypertension and low serum potassium had a 3 × 3 cm solid mass at the lower pole of left kidney diagnosed by abdominal sonography. Partial nephrectomy was performed and the postoperatory was uneventful. Normalization of blood pressure was observed within the first month.
Resumo:
Objective Activation of the renal renin-angiotensin system in patients with diabetes mellitus appears to contribute to the risk of nephropathy. Recently, it has been recognized than an elevation of prorenin in plasma also provides a strong indication of risk of nephropathy. This study was designed to examine renin-angiotensin system control mechanisms in the patient with diabetes mellitus.Methods We enrolled 43 individuals with type 2 diabetes mellitus. All individuals were on a high-salt diet to minimize the contribution of the systemic renin-angiotensin system. After an acute exposure to captopril (25 mg), they were randomized to treatment with either irbesartan (300 mg) or aliskiren (300 mg) for 2 weeks.Results All agents acutely lowered blood pressure and plasma aldosterone, and increased renal plasma flow and glomerular filtration rate. Yet, only captopril and aliskiren acutely increased plasma renin and decreased plasma angiotensin II, whereas irbesartan acutely affected neither renin nor angiotensin II. Plasma renin and angiotensin II subsequently did increase upon chronic irbesartan treatment. When given on day 14, irbesartan and aliskiren again induced the above hemodynamic, renal and adrenal effects, yet without significantly changing plasma renin. Irbesartan at that time did not affect plasma angiotensin II, whereas aliskiren lowered it to almost zero.Conclusion The relative resistance of the renal renin response to acute (irbesartan) and chronic (irbesartan and aliskiren) renin-angiotensin system blockade supports the concept of an activated renal renin-angiotensin system in diabetes, particularly at the level of the juxtaglomerular cell, and implies that diabetic patients might require higher doses of renin-angiotensin system blockers to fully suppress the renal renin-angiotensin system. J Hypertens 29: 2454-2461 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
OBJECTIVES: Calcium-sensing receptors (CaSRs) have been localized in the juxtaglomerular apparatus where they may contribute to the regulation of renin release. In the present study, we investigated the in-vitro and in-vivo effects of the calcimimetic R-568 on renin release. METHODS: In vitro, the effect of calcimimetics on renin release was assessed by incubating freshly isolated rat juxtaglomerular cells with or without R-568 (1 and 10 mumol/l) in serum-free medium in the presence or absence of forskolin or CaCl2. In vivo, we measured the impact of R-568 (20 ng/min intravenously) on the acute changes in plasma renin activity (PRA) induced by either a 90 min infusion of the angiotensin-converting enzyme inhibitor captopril, or the beta-receptor agonist isoproterenol, or of a vehicle in or after a furosemide challenge in conscious Wistar rats. RESULTS: In vitro, R-568 dose-dependently blunted renin release, but also reduced the increase in renin due to forskolin (P < 0.01). Both isoproterenol and enalapril increased in vivo PRA to 3.1 +/- 0.3 and 3.7 +/- 0.5 ng Ang I/ml per h, respectively (P < 0.01), compared with vehicle (1.5 +/- 0.2 ng Ang I/ml per h). R-568 significantly reduced PRA to 2.1 +/- 0.1 ng/ml per h in isoproterenol-treated rats and to 1.6 +/- 0.2 ng/ml per h in enalapril-treated rats (P < 0.05). In low-salt treated animals, acute infusion of furosemide increased PRA from 8.7 +/- 3.2 to 18.6 +/- 2.3, whereas R-568 partially blunted this rise to 11.2 +/- 1.5 (P = 0.02). In vivo, R-568 significantly lowered serum calcium and PTH1-84, but the drug-induced changes in PRA were independent of the changes in calcium and parathyroid hormone. CONCLUSION: After the recent discovery of CaSRs in juxtaglomerular cells of mice, our results confirm the presence of such receptors in rats and demonstrate that these receptors modulate renin release both in vitro and in vivo. This suggests that CaSRs play a role as a regulatory pathway of renin release.
Resumo:
A 25-year-old hypertensive female patient was referred to our institution. Initial workup exams demonstrated a 2.8 cm cortical lower pole tumor in the right kidney. She underwent laparoscopic partial nephrectomy without complications. Histopathologic examination revealed a rare juxtaglomerular cell tumor known as reninoma. After surgery, she recovered uneventfully and all medications were withdrawn. Case hypothesis: Secondary arterial hypertension is a matter of great interest to urologists and nephrologists. Renovascular hypertension, primary hyperadosteronism and pheocromocytoma are potential diagnosis that must not be forgotten and should be excluded. Although rare, chronic pyelonephritis and renal tumors as rennin-producing tumors, nephroblastoma, hypernephroma, and renal cell carcinoma might also induce hypertension and should be in the diagnostic list of clinicians. Promising future implications: Approximately 5% of patients with high blood pressure have specific causes and medical investigation may usually identify such patients. Furthermore, these patients can be successfully treated and cured, most times by minimally invasive techniques. This interesting case might expand knowledge of physicians and aid better diagnostic care in future medical practice.
Resumo:
The aim of the study was to analyze the frequency of epidermal growth factor receptor (EGFR) mutations in Brazilian non-small cell lung cancer patients and to correlate these mutations with response to benefit of platinum-based chemotherapy in non-small cell lung cancer (NSCLC). Our cohort consisted of prospective patients with NSCLCs who received chemotherapy (platinum derivates plus paclitaxel) at the [UNICAMP], Brazil. EGFR exons 18-21 were analyzed in tumor-derived DNA. Fifty patients were included in the study (25 with adenocarcinoma). EGFR mutations were identified in 6/50 (12 %) NSCLCs and in 6/25 (24 %) adenocarcinomas; representing the frequency of EGFR mutations in a mostly self-reported White (82.0 %) southeastern Brazilian population of NSCLCs. Patients with NSCLCs harboring EGFR exon 19 deletions or the exon 21 L858R mutation were found to have a higher chance of response to platinum-paclitaxel (OR 9.67 [95 % CI 1.03-90.41], p = 0.047). We report the frequency of EGFR activating mutations in a typical southeastern Brazilian population with NSCLC, which are similar to that of other countries with Western European ethnicity. EGFR mutations seem to be predictive of a response to platinum-paclitaxel, and additional studies are needed to confirm or refute this relationship.
Resumo:
Insulin was used as model protein to developed innovative Solid Lipid Nanoparticles (SLNs) for the delivery of hydrophilic biotech drugs, with potential use in medicinal chemistry. SLNs were prepared by double emulsion with the purpose of promoting stability and enhancing the protein bioavailability. Softisan(®)100 was selected as solid lipid matrix. The surfactants (Tween(®)80, Span(®)80 and Lipoid(®)S75) and insulin were chosen applying a 2(2) factorial design with triplicate of central point, evaluating the influence of dependents variables as polydispersity index (PI), mean particle size (z-AVE), zeta potential (ZP) and encapsulation efficiency (EE) by factorial design using the ANOVA test. Therefore, thermodynamic stability, polymorphism and matrix crystallinity were checked by Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD), whereas the effect of toxicity of SLNs was check in HepG2 and Caco-2 cells. Results showed a mean particle size (z-AVE) width between 294.6 nm and 627.0 nm, a PI in the range of 0.425-0.750, ZP about -3 mV, and the EE between 38.39% and 81.20%. After tempering the bulk lipid (mimicking the end process of production), the lipid showed amorphous characteristics, with a melting point of ca. 30 °C. The toxicity of SLNs was evaluated in two distinct cell lines (HEPG-2 and Caco-2), showing to be dependent on the concentration of particles in HEPG-2 cells, while no toxicity in was reported in Caco-2 cells. SLNs were stable for 24 h in in vitro human serum albumin (HSA) solution. The resulting SLNs fabricated by double emulsion may provide a promising approach for administration of protein therapeutics and antigens.
Resumo:
Leg ulcers represent a particularly disabling complication in patients with sickle cell disease (SCD). Platelet gel (PG) is a novel therapeutic strategy used for accelerating wound healing of a wide range of tissues through the continuous release of platelet growth factors. Here, we describe the use of PG preparation according to Anitua's PRGF (preparations rich in growth factors) protocol for treating chronic nonhealing ulcers in patients with SCD. A positive response occurred in 3 patients with an area reduction of 85.7% to 100%, which occurred within 7 to 10 weeks, and a 35.2% and 20.5% of area reduction in 2 other patients, who however, had large ulcers. After calcium chloride addition, the platelet-rich plasmas demonstrated enhanced platelet-derived growth factors-BB (P < .001), transforming growth factor-β1 (P = .015), vascular endothelial growth factors (P = .03), and hepatocyte growth factors (nonsignificant) secretion. Furthermore, calcium chloride addition induced a significant decrease in platelet number (P = .0134) and there was no leukocyte detection in the PG product. These results demonstrate that PG treatment might impact the healing of leg ulcers in sickle cell disease, especially in patients with small ulcers.
Resumo:
In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.
Resumo:
Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules.
Resumo:
For the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed π-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests.
Resumo:
The mechanism underlying castration-induced prostate regression, which is a classical physiological concept translated into the therapeutic treatment of advanced prostate cancer, involves epithelial cell apoptosis. In searching for events and mechanisms contributing to prostate regression in response to androgen modulation, we have frequently observed the collective deletion of epithelial cells. This work was undertaken to characterize this phenomenon hereafter named desquamation and to verify its presence after 17β-estradiol (E2) administration. Electron microscopy revealed that the desquamating cells had preserved cell-cell junctions and collapsed nuclear contents. The TUNEL reaction was negative for these cells, which were also negative for cleaved caspases-8, -9, -3 and nuclear apoptosis-inducing factor. Detailed analyses revealed that the condensed chromatin was first affected detaching from the nuclear lamina, which was observable after lamin A immunohistochemistry, suggesting the lack of lamin A degradation. A search in animals treated with supraphysiological E2 employed as an alternative anti-androgen treatment revealed no desquamation. The combined treatment (Cas + E2 group) caused changes particular to each treatment, including desquamation. In conclusion, desquamation appeared as a novel phenomenon contributing to collective prostate epithelial cell deletion, distinct from the classical castration-induced apoptosis and particular to the androgen deprivation resulting from surgical castration, and should be considered as part of the mechanisms promoting organ regression.
Resumo:
To verify whether fluorescence in situ hybridization (FISH) of cells from the buccal epithelium could be employed to detect cryptomosaicism with a 45,X lineage in 46,XY patients. Samples of nineteen 46,XY healthy young men and five patients with disorders of sex development (DSD), four 45,X/46,XY and one 46,XY were used. FISH analysis with X and Y specific probes on interphase nuclei from blood lymphocytes and buccal epithelium were analyzed to investigate the proportion of nuclei containing only the signal of the X chromosome. The frequency of nuclei containing only the X signal in the two tissues of healthy men did not differ (p = 0.69). In all patients with DSD this frequency was significantly higher, and there was no difference between the two tissues (p = 0.38), either. Investigation of mosaicism with a 45,X cell line in patients with 46,XY DSD or sterility can be done by FISH directly using cells from the buccal epithelium.
Resumo:
Lower levels of cytosine methylation have been found in the liver cell DNA from non-obese diabetic (NOD) mice under hyperglycemic conditions. Because the Fourier transform-infrared (FT-IR) profiles of dry DNA samples are differently affected by DNA base composition, single-stranded form and histone binding, it is expected that the methylation status in the DNA could also affect its FT-IR profile. The DNA FT-IR signatures obtained from the liver cell nuclei of hyperglycemic and normoglycemic NOD mice of the same age were compared. Dried DNA samples were examined in an IR microspectroscope equipped with an all-reflecting objective (ARO) and adequate software. Changes in DNA cytosine methylation levels induced by hyperglycemia in mouse liver cells produced changes in the respective DNA FT-IR profiles, revealing modifications to the vibrational intensities and frequencies of several chemical markers, including νas -CH3 stretching vibrations in the 5-methylcytosine methyl group. A smaller band area reflecting lower energy absorbed in the DNA was found in the hyperglycemic mice and assumed to be related to the lower levels of -CH3 groups. Other spectral differences were found at 1700-1500 cm(-1) and in the fingerprint region, and a slight change in the DNA conformation at the lower DNA methylation levels was suggested for the hyperglycemic mice. The changes that affect cytosine methylation levels certainly affect the DNA-protein interactions and, consequently, gene expression in liver cells from the hyperglycemic NOD mice.
Resumo:
The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.
Resumo:
The present work compared the local injection of mononuclear cells to the spinal cord lateral funiculus with the alternative approach of local delivery with fibrin sealant after ventral root avulsion (VRA) and reimplantation. For that, female adult Lewis rats were divided into the following groups: avulsion only, reimplantation with fibrin sealant; root repair with fibrin sealant associated with mononuclear cells; and repair with fibrin sealant and injected mononuclear cells. Cell therapy resulted in greater survival of spinal motoneurons up to four weeks post-surgery, especially when mononuclear cells were added to the fibrin glue. Injection of mononuclear cells to the lateral funiculus yield similar results to the reimplantation alone. Additionally, mononuclear cells added to the fibrin glue increased neurotrophic factor gene transcript levels in the spinal cord ventral horn. Regarding the motor recovery, evaluated by the functional peroneal index, as well as the paw print pressure, cell treated rats performed equally well as compared to reimplanted only animals, and significantly better than the avulsion only subjects. The results herein demonstrate that mononuclear cells therapy is neuroprotective by increasing levels of brain derived neurotrophic factor (BDNF) and glial derived neurotrophic factor (GDNF). Moreover, the use of fibrin sealant mononuclear cells delivery approach gave the best and more long lasting results.