807 resultados para juvenile habitat
Resumo:
Habitat of juvenile Caribbean reef sharks, Carcharhinus perezi (Carcharhinidae), was identified using fishing surveys and capture of immature specimens at two Brazilian insular sites in the southwestern Atlantic Ocean, Fernando de Noronha Archipelago and Atol das Rocas. Standardized sampling at Fernando de Noronha indicated that parturition occurred from February to April and that a wide depth-range (at least 5-30 m) along the insular shelf was used by immature sharks throughout the year. The catch-per-unit effort of C. perezi was significantly higher inside than outside a marine protected area at this location, suggesting that these sharks are more common in pans of the reef least disturbed by human activities. More limited sampling at Atol das Rocas suggested that juvenile C. perezi occurred at similar depths and utilized similar substrate as sharks at Fernando de Noronha. These findings suggest that successful conservation and management of this economically important, protected species will need to include conservation of habitat around insular reef systems. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Patterns were investigated in juvenile fish use of unconsolidated sediments on the southeast United States continental shelf off Georgia. Juvenile fish and environmental data were sampled at ten stations along a 110-km cross-shelf transect, including four stations surrounding Gray’s Reef National Marine Sanctuary (Gray’s Reef NMFS). Cross-shelf stations were sampled approximately quarterly from spring 2000 to winter 2002. Additional stations were sampled on three transects inshore of Gray’s Reef NMS and four transects offshore of the Sanctuary during three cruises to investigate along-shelf patterns in the juvenile fish assemblages. Samples were collected in beam trawls, and 121 juvenile taxa, of which 33 were reef-associated species, were identified. Correspondence analysis on untransformed juvenile fish abundance indicated a cross-shelf gradient in assemblages, and the station groupings and assemblages varied seasonally. During the spring, fall, and winter, three cross-shelf regions were identified: inner-shelf, mid-shelf, and outer-shelf regions. In the summer, the shelf consisted of a single juvenile fish assemblage. Water depth was the primary environmental variable correlated with cross-shelf assemblages. However, salinity, density, and water column stratification also correlated with the distribution of assemblages during the spring, fall, and winter, and along with temperature likely influenced the distribution of juvenile fish. No along-shelf spatial patterns were found in the juvenile fish assemblages, but the along-shelf dimension sampled was small (~60 km). Our results revealed that a number of commercially and recreationally important species used unconsolidated sediments on the shelf off Georgia as juvenile habitat. We conclude that management efforts would be improved through a greater recognition of the importance of these habitats to fish production and the interconnectedness of multiple habitats in the southeast U.S. continental shelf ecosystem.
Resumo:
To investigate the possibility that oil and gas platforms may reduce recruitment of rockfishes (Sebastes spp.) to natural habitat, we simulated drift pathways termed “trajectories” in our model) from an existing oil platform to nearshore habitat using current measurements from high-frequency (HF) radars. The trajectories originated at Platform Irene, located west of Point Conception, California, during two recruiting seasons for bocaccio (Sebastes paucispinis): May through August, 1999 and 2002. Given that pelagic juvenile bocaccio dwell near the surface, the trajectories estimate transport to habitat. We assumed that appropriate shallow water juvenile habitat exists inshore of the 50-m isobath. Results from 1999 indicated that 10% of the trajectories represent transport to habitat, whereas 76% represent transport across the offshore boundary. For 2002, 24% represent transport to habitat, and 69% represent transport across the offshore boundary. Remaining trajectories (14% and 7% for 1999 and 2002, respectively) exited the coverage area either northward or southward along isobaths. Deployments of actual drifters (with 1-m drogues) from a previous multiyear study provided measurements originating near Platform Irene from May through August. All but a few of the drifters moved offshore, as was also shown with the HF radar-derived trajectories. These results indicate that most juvenile bocaccio settling on the platform would otherwise have been transported offshore and perished in the absence of a platform. However, these results do not account for the swimming behavior of juvenile bocaccio, about which little is known.
Resumo:
Owing to limited knowledge of the habitat use and diet of juvenile Arctic charr from the High Arctic, particularly young-of-the-year (YOY), we assembled data obtained from samples taken in and around Lake Hazen, Nunavut, Canada, to assess juvenile habitat use and feeding. Juvenile charr demonstrated a preference for stream environments, particularly those fed by warm upstream ponds. Charr occupying both stream and nearshore lake habitats were found to feed similarly, with chironomids occurring most frequently in diets. Some older stream-dwelling charr preyed on smaller, younger Arctic charr. Preferred stream occupancy is likely mediated by physical barriers created mainly by water velocity, and by distance from the lake, lake-ice dynamics, low water depth, and turbidity. Water velocities resulted in stream habitat segregation by size, with YOY mainly found in low-velocity pools and back eddies adjacent to stream banks, but not in water velocities >0.1 m/s. Greatest charr densities in streams were found in small, shallow, slow-flowing side channels, which are highly susceptible to drought. Under predicted climate change scenarios, streams fed by small ponds will be susceptible to intermittent flow conditions, which could result in increased competition among juvenile charr for the remaining stream habitats. In addition, glacier-fed streams are likely to experience increased flow conditions that will exacerbate physical barriers created by water velocity and further reduce the availability of preferred stream habitat.
Resumo:
The evaluation and identification of habitats that function as nurseries for marine species has the potential to improve conservation and management. A key assessment of nursery habitat is estimating individual growth. However, the discrete growth of crustaceans presents a challenge for many traditional in situ techniques to accurately estimate growth over a short temporal scale. To evaluate the use of nucleic acid ratios (R:D) for juvenile blue crab (Callinectes sapidus), I developed and validated an R:D-based index of growth in the laboratory. R:D based growth estimates of crabs collected in the Patuxent River, MD indicated growth ranged from 0.8-25.9 (mg·g-1·d-1). Overall, there was no effect of size on growth, whereas there was a weak, but significant effect of date. These data provide insight into patterns of habitat-specific growth. These results highlight the complexity of the biological and physical factors which regulate growth of juvenile blue crabs in the field.
Resumo:
To develop an understanding of stock structure and recruitment variation in Bering Sea pollock, the Coastal Ocean Program of the National Oceanic and Atmospheric Administration (NOAA) funded an 7-year (1991-1997), interdisciplinary project named Bering Sea Fisheries-Oceanography Coordinated Investigations (BS FOCI; Schumacher and Kendall, 1995) for which NOAA and academic researchers were selected through a competitive process (Macklin, this report). The project goals, based on recommendations from an international symposium on pollock (Aron and Balsiger, 1989) were to (1) determine stock structure in the Bering Sea and its potential relationship to physical oceanography, and (2) examine recruitment processes in the eastern Bering Sea. Both of these have direct implication to management. An integrated set of field, laboratory, and modeling studies were established to accomplish these goals. To address the first goal, project objectives were to establish details of oceanic circulation relevant to larval dispersal and separation of stocks, and determine if unique chemical or genetic indicators existed for different stocks. The recruitment component of BS FOCI, addressing the second goal, focused on understanding causes of variable mortality of pollock larvae in the different habitats of the eastern Bering Sea. The emphasis of recruitment studies was to determine the dominant physical oceanographic features (turbulence, temperature, and transport) that could influence survival of pollock larvae, and investigate factors controlling food production for the larvae. A later component contrasted juvenile habitat in three hydrographic regimes around the Pribilof Islands (Brodeur, this report).
Resumo:
1. Predation is a prime force of natural selection. Vulnerability to predation is typically highest early in life, hence effective antipredator defences should work already shortly after birth. Such early defences may be innate, transmitted through non-genetic parental effects or acquired by own early experience. 2. To understand potential joint effects of these sources of antipredator defences on pheno- typic expression, they should be manipulated within the same experiment. We investigated innate, parental and individual experience effects within a single experiment. Females of the African cichlid Simochromis pleurospilus were exposed to the offspring predator Ctenochromis horei or a benign species until spawning. Eggs and larvae were hand-reared, and larvae were then exposed to odour cues signalling the presence or absence of predators in a split-brood design. 3. Shortly after independence of maternal care, S. pleurospilus undergo a habitat shift from a deeper, adult habitat to a shallow juvenile habitat, a phase where young are thought to be par- ticularly exposed to predation risk. Thus, maternal effects induced by offspring predators pres- ent in the adult habitat should take effect mainly shortly after independence, whereas own experience and innate antipredator responses should shape behaviour and life history of S. pleurospilus during the later juvenile period. 4. We found that the manipulated environmental components independently affected different offspring traits. (i) Offspring of predator-exposed mothers grew faster during the first month of life and were thus larger at termination of maternal care, when the young migrate from the adult to the juvenile habitat. (ii) The offspring’s own experience shortly after hatching exerted lasting effects on predator avoidance behaviour. (iii) Finally, our results suggest that S. pleuro- spilus possess a genetically inherited ability to distinguish dangerous from benign species. 5. In S. pleurospilus, maternal effects were limited to a short but critical time window, when young undergo a niche shift. Instead, own environmental sampling of predation risk combined with an innate predisposition to correctly identify predators appears to prepare the young best for the environment, in which they grow up as juveniles.
Resumo:
Organismal survival in marine habitats is often positively correlated with habitat structural complexity at local (within-patch) spatial scales. Far less is known, however, about how marine habitat structure at the landscape scale influences predation and other ecological processes, and in particular, how these processes are dictated by the interactive effect of habitat structure at local and landscape scales. The relationship between survival and habitat structure can be modeled with the habitat-survival function (HSF), which often takes on linear, hyperbolic, or sigmoid forms. We used tethering experiments to determine how seagrass landscape structure influenced the HSF for juvenile blue crabs Callinectes sapidus Rathbun in Back Sound, North Carolina, USA. Crabs were tethered in artificial seagrass plots of 7 different shoot densities embedded within small (1 – 3 m2) or large (>100 m2) seagrass patches (October 1999), and within 10 × 10 m landscapes containing patchy (<50% cover) or continuous (>90% cover) seagrass (July 2000). Overall, crab survival was higher in small than in large patches, and was higher in patchy than in continuous seagrass. The HSF was hyperbolic in large patches and in continuous seagrass, indicating that at low levels of habitat structure, relatively small increases in structure resulted in substantial increases in juvenile blue crab survival. However, the HSF was linear in small seagrass patches in 1999 and was parabolic in patchy seagrass in 2000. A sigmoid HSF, in which a threshold level of seagrass structure is required for crab survival, was never observed. Patchy seagrass landscapes are valuable refuges for juvenile blue crabs, and the effects of seagrass structural complexity on crab survival can only be fully understood when habitat structure at larger scales is considered.
Resumo:
This compendium presents information on the life history, diet, and abundance and distribution of 46 of the more abundant juvenile and small resident fish species, and data on three species of seagrasses in Florida Bay, Everglades National Park. Abundance and distribution of fish data were derived from three sampling schemes: (1) an otter trawl in basins (1984–1985, 1994–2001), (2) a surface trawl in basins (1984–1985), and (3) a surface trawl in channels (1984–1985). Results from surface trawling only included pelagic species. Collections made with an otter trawl in basins on a bi-monthly basis were emphasized. Nonparametric statistics were used to test spatial and temporal differences in the abundance of species and seagrasses. Fish species accounts were presented in four sections – Life history, Diet, Abundance and distribution, and Length-frequency distributions. Although Florida Bay is a subtropical estuary, the majority of fish species (76%) had warm-temperate affinities; i.e., only 24% were solely tropical species. The five most abundant species collected, in descending order, by (1) otter trawl in basins were: Eucinostomus gula, Lucania parva, Anchoa mitchilli, Lagodon rhomboides, and Syngnathus scovelli; (2) surface trawl in basins were: Hyporhamphus unifasciatus, Strongylura notata, Chriodorus atherinoides, Anchoa hepsetus, and Atherinomorus stipes; (3) surface trawl in channels were: Hypoatherina harringtonensis, A. stipes, A. mitchelli, H. unifasciatus, and C. atherinoides. (PDF file contains 219 pages.)
Resumo:
We evaluated habitat quality for juvenile California halibut (Paralichthys californicus) in a Pacific Coast estuary lacking in strong salinity gradients by examining density, recent otolith growth rates, and gut fullness levels of wild-caught and caged juveniles for one year. Juveniles <200 mm standard length were caught consistently in the inner, central, and outer sections of the estuary. The density of juveniles was two times higher in the inner estuary during most of the year, consistent with active habitat selection by part of the population. A generalized linear model indicated temperature, sampling time, and the interaction between salinity and temperature were significantly related to density. However, the model explained only 21% of the variance. Gut fullness levels of wild-caught juveniles were highest during the summer, but recent otolith growth rates were not related to temperature. The proportion of individuals feeding successfully indicated that seasonal differences in food availability are more important than spatial variation in prey abundance in driving feeding success. Feeding success of caged fishes was limited, precluding the use of growth rates as indicators of local habitat quality. However, marginal increment widths were reliable indicators of somatic growth at low growth rates over two-week periods. The relatively high growth rates and abundance of small wild-caught juveniles found throughout the estuary indicates that the entire estuary system has the potential for serving as nursery habitat.