998 resultados para joint pressure
Resumo:
BACKGROUND: Tendon transfers and calcaneal osteotomies are commonly used to treat symptoms related to medial ankle arthrosis in fixed pes cavovarus. However, the relative effect of these osteotomies in terms of lateralizing the ground contact point of the hindfoot and redistributing ankle joint contact stresses are unknown. MATERIALS AND METHODS: Pes cavovarus with fixed hindfoot varus was simulated in eight cadaver specimens. The effect of three types of calcaneal osteotomies on the migration of the center of force and tibiotalar peak pressure at 300 N axial static load (half-body weight) were recorded using pressure sensors. RESULTS: A significant lateral shift of the center of force was observed: 4.9 mm for the laterally closing Z-shaped osteotomy with additional lateralization of the tuberosity, 3.4 mm for the lateral sliding osteotomy of the calcaneal tuberosity, and 2.7 mm for the laterally closing Z-shaped osteotomy (all p < 0.001). A significant peak pressure reduction was recorded: -0.53 MPa for the Z-shaped osteotomy with lateralization, -0.58 MPa for the lateral sliding osteotomy of the calcaneal tuberosity, and -0.41 MPa for the Z-shaped osteotomy (all p < 0.01). CONCLUSION: This cadaver study supports the hypothesis that lateralizing calcaneal osteotomies substantially help to normalize ankle contact stresses in pes cavovarus.
Resumo:
Tendon transfers and calcaneal osteotomies are commonly used to treat symptoms related to medial ankle arthrosis in fixed pes cavovarus. However, the relative effect of these osteotomies in terms of lateralizing the ground contact point of the hindfoot and redistributing ankle joint contact stresses are unknown.
Resumo:
Hindfoot trauma including ankle and subtalar sprains may be followed by osteochondral lesions and persisting pain originating from posttraumatic arthritis.
Resumo:
A cavovarus foot deformity was simulated in cadaver specimens by inserting metallic wedges of 15 degrees and 30 degrees dorsally into the first tarsometatarsal joint. Sensors in the ankle joint recorded static tibiotalar pressure distribution at physiological load. The peak pressure increased significantly from neutral alignment to the 30 degrees cavus deformity, and the centre of force migrated medially. The anterior migration of the centre of force was significant for both the 15 degrees (repeated measures analysis of variance (ANOVA), p = 0.021) and the 30 degrees (repeated measures ANOVA, p = 0.007) cavus deformity. Differences in ligament laxity did not influence the peak pressure. These findings support the hypothesis that the cavovarus foot deformity causes an increase in anteromedial ankle joint pressure leading to anteromedial arthrosis in the long term, even in the absence of lateral hindfoot instability.
Resumo:
BACKGROUND: A fixed cavovarus foot deformity can be associated with anteromedial ankle arthrosis due to elevated medial joint contact stresses. Supramalleolar valgus osteotomies (SMOT) and lateralizing calcaneal osteotomies (LCOT) are commonly used to treat symptoms by redistributing joint contact forces. In a cavovarus model, the effects of SMOT and LCOT on the lateralization of the center of force (COF) and reduction of the peak pressure in the ankle joint were compared. METHODS: A previously published cavovarus model with fixed hindfoot varus was simulated in 10 cadaver specimens. Closing wedge supramalleolar valgus osteotomies 3 cm above the ankle joint level (6 and 11 degrees) and lateral sliding calcaneal osteotomies (5 and 10 mm displacement) were analyzed at 300 N axial static load (half body weight). The COF migration and peak pressure decrease in the ankle were recorded using high-resolution TekScan pressure sensors. RESULTS: A significant lateral COF shift was observed for each osteotomy: 2.1 mm for the 6 degrees (P = .014) and 2.3 mm for the 11 degrees SMOT (P = .010). The 5 mm LCOT led to a lateral shift of 2.0 mm (P = .042) and the 10 mm LCOT to a shift of 3.0 mm (P = .006). Comparing the different osteotomies among themselves no significant differences were recorded. No significant anteroposterior COF shift was seen. A significant peak pressure reduction was recorded for each osteotomy: The SMOT led to a reduction of 29% (P = .033) for the 6 degrees and 47% (P = .003) for the 11 degrees osteotomy, and the LCOT to a reduction of 41% (P = .003) for the 5 mm and 49% (P = .002) for the 10 mm osteotomy. Similar to the COF lateralization no significant differences between the osteotomies were seen. CONCLUSION: LCOT and SMOT significantly reduced anteromedial ankle joint contact stresses in this cavovarus model. The unloading effects of both osteotomies were equivalent. More correction did not lead to significantly more lateralization of the COF or more reduction of peak pressure but a trend was seen. CLINICAL RELEVANCE: In patients with fixed cavovarus feet, both SMOT and LCOT provided equally good redistribution of elevated ankle joint contact forces. Increasing the amount of displacement did not seem to equally improve the joint pressures. The site of osteotomy could therefore be chosen on the basis of surgeon's preference, simplicity, or local factors in case of more complex reconstructions.
Resumo:
The study of the influence of motion and initial intra-articular pressure (IAP) on intra-articular pressure profiles in equine cadaver metatarsophalangeal (MTP) joints was undertaken as a prelude to in vivo studies, Eleven equine cadaver MTP joints were submitted to 2 motion frequencies of 5 and 10 cycles/min of flexion and extension, simulating the condition of lower and higher (double) rates of passive motion. These frequencies were applied and pressure profiles generated with initial normal intra-articular pressure (-5 mmHg) and subsequently 30 mmHg intra-articular pressure obtained by injection of previously harvested synovial fluid.The 4 trials performed were 1) normal IAP; 5 cyles/min; 2) normal IAP; 10 cycles/min; 3) IAP at 30 mmHg; 5 cycles/min and 4) IAP at 30 mmHg; 10 cycles/min. The range of joint motion applied (mean +/- s.e.) was 67.6 +/- 1.61 degrees with an excursion from 12.2 +/- 1.2 degrees in extension to 56.2 +/- 2.6 degrees in flexion, Mean pressure recorded in mmHg for the first and last min of each trial, respectively, were 1) -5.7 +/- 0.9 and -6.3 +/- 1.1; 2) -5.3 +/- 1.1 and -6.2 +/- 1.1; 3) 58.8 +/- 8.0 and 42.3 +/- 7.2; 4) 56.6 +/- 3.7 and 40.3 +/- 4.6. Statistical analyses showed a trend for difference between the values for the first and last minute in trial 3 (0.05>P<0.1) with P = 0.1 and significant difference (P = 0.02) between the mean IAP of the first and last min in trial 4. The loss of intra-articular pressure associated with time and motion was 10.5, 16.9, 28.1 and 28.9% for trials 1-4, respectively. As initial intraarticular pressure and motion increased, the percent loss of intra-articular pressure increased.The angle of lowest pressure was 12.2 +/- 1.2
Resumo:
Many traits and/or strategies expressed by organisms are quantitative phenotypes. Because populations are of finite size and genomes are subject to mutations, these continuously varying phenotypes are under the joint pressure of mutation, natural selection and random genetic drift. This article derives the stationary distribution for such a phenotype under a mutation-selection-drift balance in a class-structured population allowing for demographically varying class sizes and/or changing environmental conditions. The salient feature of the stationary distribution is that it can be entirely characterized in terms of the average size of the gene pool and Hamilton's inclusive fitness effect. The exploration of the phenotypic space varies exponentially with the cumulative inclusive fitness effect over state space, which determines an adaptive landscape. The peaks of the landscapes are those phenotypes that are candidate evolutionary stable strategies and can be determined by standard phenotypic selection gradient methods (e.g. evolutionary game theory, kin selection theory, adaptive dynamics). The curvature of the stationary distribution provides a measure of the stability by convergence of candidate evolutionary stable strategies, and it is evaluated explicitly for two biological scenarios: first, a coordination game, which illustrates that, for a multipeaked adaptive landscape, stochastically stable strategies can be singled out by letting the size of the gene pool grow large; second, a sex-allocation game for diploids and haplo-diploids, which suggests that the equilibrium sex ratio follows a Beta distribution with parameters depending on the features of the genetic system.
Resumo:
The electromyographic activity of the shoulder muscles deltoid - anterior portion (DA) and pectoralis major - clavicular portion (PMC) was tested on 24 male volunteers using a 2 channel TEC A TE4 electromyograph and Hewlett Packard surface electrodes during the execution of four different modalities of frontal-lateral cross, dumbbells exercises. The results showed that all of the tested exercises developed high levels of action potential for both muscles. So, we jusfity the indication of all of them for physical fitness programmes for DA and PMC. Some suggestions to the use of the tested exercises are presented.
Resumo:
Este estudo investiga a otimização da resistência ao cisalhamento no plano de juntas de sobreposição co-curadas do compósito termoplástico unidirecional auto-reforçado de polietileno de baixa densidade reciclado reforçado por fibras de polietileno de ultra alto peso molecular através da relação desta resistência com os parâmetros processuais de prensagem a quente para a conformação da junta (pressão, temperatura, tempo e comprimento). A matriz teve sua estrutura química analisada para verificar potenciais degradações devidas à sua origem de reciclagem. Matriz e reforço foram caracterizados termicamente para definir a janela de temperatura de processamento de junta a ser estudada. A elaboração das condições de cura dos corpos de prova foi feita de acordo com a metodologia de Projeto de Experimento de Superfície de Resposta e a relação entre a resistência ao cisalhamento das juntas e os respectivos parâmetros de cura foi obtida através de equação de regressão gerada pelo método dos Mínimos Quadrados Ordinários. A caracterização mecânica em tração do material foi analisada micro e macromecanicamente. A análise química da matriz não demonstrou a presença de grupos carboxílicos que evidenciassem degradação por ramificações de cadeia e reticulação advindos da reciclagem do material. As metodologias de ensaio propostas demonstraram ser eficazes, podendo servir como base para a constituição de normas técnicas. Demonstrou-se que é possível obter juntas com resistência ótima ao cisalhamento de 6,88 MPa quando processadas a 1 bar, 115°C, 5 min e com 12 mm. A análise da fratura revelou que a ruptura por cisalhamento das juntas foi precedida por múltiplas fissuras longitudinais induzidas por sucessivos debondings, tanto dentro quanto fora da junta, devido à tensão transversal acumulada na mesma, proporcional a seu comprimento. A temperatura demonstrou ser o parâmetro de processamento mais relevante para a performance da junta, a qual é pouco afetada por variações na pressão e tempo de cura.
Resumo:
DESIGN: A randomized controlled trial.OB JECTIVE: To investigate the immediate effects on pressure pain thresholds over latent trigger points (TrPs) in the masseter and temporalis muscles and active mouth opening following atlanto-occipital joint thrust manipulation or a soft tissue manual intervention targeted to the suboccipital muscles. BACKGROUND : Previous studies have described hypoalgesic effects of neck manipulative interventions over TrPs in the cervical musculature. There is a lack of studies analyzing these mechanisms over TrPs of muscles innervated by the trigeminal nerve. METHODS: One hundred twenty-two volunteers, 31 men and 91 women, between the ages of 18 and 30 years, with latent TrPs in the masseter muscle, were randomly divided into 3 groups: a manipulative group who received an atlanto-occipital joint thrust, a soft tissue group who received an inhibition technique over the suboccipital muscles, and a control group who did not receive an intervention. Pressure pain thresholds over latent TrPs in the masseter and temporalis muscles, and active mouth opening were assessed pretreatment and 2 minutes posttreatment by a blinded assessor. Mixed-model analyses of variance (ANOVA) were used to examine the effects of interventions on each outcome, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. RESULTS: The 2-by-3 mixed-model ANOVA revealed a significant group-by-time interaction for changes in pressure pain thresholds over masseter (P<.01) and temporalis (P =.003) muscle latent TrPs and also for active mouth opening (P<.001) in favor of the manipulative and soft tissue groups. Between-group effect sizes were small. CONCLUSIONS: The application of an atlanto-occipital thrust manipulation or soft tissue technique targeted to the suboccipital muscles led to an immediate increase in pressure pain thresholds over latent TrPs in the masseter and temporalis muscles and an increase in maximum active mouth opening. Nevertheless, the effects of both interventions were small and future studies are required to elucidate the clinical relevance of these changes. LEVEL OF EVIDENCE : Therapy, level 1b. J Orthop Sports Phys Ther 2010;40(5):310-317. doi:10.2519/jospt.2010.3257. KEYWORDSDS: cervical manipulation, muscle trigger points, neck, TMJ, upper cervical.
Resumo:
A study of four major concrete pavement joint rehabilitation techniques has been conducted, including: pressure relief joints, full-depth repairs, partial-depth repairs and joint resealing. The products of this research include the following for each technique: a summary of published research, detailed documentation of the design and performance of the 36 projects, conclusions and recommendations of the state highway engineers panel, "Design and Construction Guidelines" and "Guide Specifications." The latter two products are prepared for use by state highway agencies. The results of this study are based upon a review of literature, extensive field surveys and analysis of 36 rehabilitation projects, and the experience of an expert panel of state highway engineers.
Resumo:
We investigated the effect of joint immobilization on the postural sway during quiet standing. We hypothesized that the center of pressure (COP), rambling, and trembling trajectories would be affected by joint immobilization. Ten young adults stood on a force plate during 60 s without and with immobilized joints (only knees constrained, CK; knees and hips, CH; and knees, hips, and trunk, CT). with their eyes open (OE) or closed (CE). The root mean square deviation (RMS, the standard deviation from the mean) and mean speed of COP, rambling, and trembling trajectories in the anterior-posterior and medial-lateral directions were analyzed. Similar effects of vision were observed for both directions: larger amplitudes for all variables were observed in the CE condition. In the anterior-posterior direction, postural sway increased only when the knees, hips, and trunk were immobilized. For the medial-lateral direction, the RMS and the mean speed of the COP, rambling, and trembling displacements decreased after immobilization of knees and hips and knees, hips, and trunk. These findings indicate that the single inverted pendulum model is unable to completely explain the processes involved in the control of the quiet upright stance in the anterior-posterior and medial-lateral directions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The biomechanics of the sacroiliac joint makes the pelvic segment responsible for proper weight distribution between lower extremities; however, it is known to be susceptible to altered mobility. The objective of this study was to analyze baropodometric responses following thrust manipulation on subjects with sacroiliac joint restrictions. Twenty asymptomatic subjects were submitted to computerized baropodometric analysis before, after, and seven days following sacroiliac manipulation. The variables peak pressure and contact area were obtained at each of these periods as the average of absolute values of the difference between the right and left foot based on three trials. Data revealed significant reduction only in peak pressure immediately after manipulation and at follow-up when compared to pre-manipulative values (p < 0.05). Strong correlation was found between the dominant foot and the foot with greater contact area (r - 0.978), as well as between the side of joint restriction and the foot with greater contact area (r = 0.884). Weak correlation was observed between the dominant foot and the foot with greater peak pressure (r = 0.501), as well as between the side of joint restriction and the foot with greater peak pressure (r = 0.694). The results suggest that sacroiliac joint manipulation can influence peak pressure distribution between feet, but contact area does not seem to be related to the biomechanical aspects addressed in this study. (C) 2011 Elsevier Ltd. All rights reserved.