966 resultados para iterative algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the problem of phase retrieval, which is frequently encountered in optical imaging. The measured quantity is the magnitude of the Fourier spectrum of a function (in optics, the function is also referred to as an object). The goal is to recover the object based on the magnitude measurements. In doing so, the standard assumptions are that the object is compactly supported and positive. In this paper, we consider objects that admit a sparse representation in some orthonormal basis. We develop a variant of the Fienup algorithm to incorporate the condition of sparsity and to successively estimate and refine the phase starting from the magnitude measurements. We show that the proposed iterative algorithm possesses Cauchy convergence properties. As far as the modality is concerned, we work with measurements obtained using a frequency-domain optical-coherence tomography experimental setup. The experimental results on real measured data show that the proposed technique exhibits good reconstruction performance even with fewer coefficients taken into account for reconstruction. It also suppresses the autocorrelation artifacts to a significant extent since it estimates the phase accurately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tomography problem is investigated when the available projections are restricted to a limited angular domain. It is shown that a previous algorithm proposed for extrapolating the data to the missing cone in Fourier space is unstable in the presence of noise because of the ill-posedness of the problem. A regularized algorithm is proposed, which converges to stable solutions. The efficiency of both algorithms is tested by means of numerical simulations. © 1983 Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The convergence of the iterative identification algorithm for a general Hammerstein system has been an open problem for a long time. In this paper, it is shown that the convergence can be achieved by incorporating a regularization procedure on the nonlinearity in addition to a normalization step on the parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose two algorithms involving the relaxation of either the given Dirichlet data (boundary displacements) or the prescribed Neumann data (boundary tractions) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [16] applied to Cauchy problems in linear elasticity. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose an iterative algorithm to detect transient segments in audio signals. Short time Fourier transform(STFT) is used to detect rapid local changes in the audio signal. The algorithm has two steps that iteratively - (a) calculate a function of the STFT and (b) build a transient signal. A dynamic thresholding scheme is used to locate the potential positions of transients in the signal. The iterative procedure ensures that genuine transients are built up while the localised spectral noise are suppressed by using an energy criterion. The extracted transient signal is later compared to a ground truth dataset. The algorithm performed well on two databases. On the EBU-SQAM database of monophonic sounds, the algorithm achieved an F-measure of 90% while on our database of polyphonic audio an F-measure of 91% was achieved. This technique is being used as a preprocessing step for a tempo analysis algorithm and a TSR (Transients + Sines + Residue) decomposition scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Iterative Closest Point algorithm (ICP) is commonly used in engineering applications to solve the rigid registration problem of partially overlapped point sets which are pre-aligned with a coarse estimate of their relative positions. This iterative algorithm is applied in many areas such as the medicine for volumetric reconstruction of tomography data, in robotics to reconstruct surfaces or scenes using range sensor information, in industrial systems for quality control of manufactured objects or even in biology to study the structure and folding of proteins. One of the algorithm’s main problems is its high computational complexity (quadratic in the number of points with the non-optimized original variant) in a context where high density point sets, acquired by high resolution scanners, are processed. Many variants have been proposed in the literature whose goal is the performance improvement either by reducing the number of points or the required iterations or even enhancing the complexity of the most expensive phase: the closest neighbor search. In spite of decreasing its complexity, some of the variants tend to have a negative impact on the final registration precision or the convergence domain thus limiting the possible application scenarios. The goal of this work is the improvement of the algorithm’s computational cost so that a wider range of computationally demanding problems from among the ones described before can be addressed. For that purpose, an experimental and mathematical convergence analysis and validation of point-to-point distance metrics has been performed taking into account those distances with lower computational cost than the Euclidean one, which is used as the de facto standard for the algorithm’s implementations in the literature. In that analysis, the functioning of the algorithm in diverse topological spaces, characterized by different metrics, has been studied to check the convergence, efficacy and cost of the method in order to determine the one which offers the best results. Given that the distance calculation represents a significant part of the whole set of computations performed by the algorithm, it is expected that any reduction of that operation affects significantly and positively the overall performance of the method. As a result, a performance improvement has been achieved by the application of those reduced cost metrics whose quality in terms of convergence and error has been analyzed and validated experimentally as comparable with respect to the Euclidean distance using a heterogeneous set of objects, scenarios and initial situations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate two numerical procedures for the Cauchy problem in linear elasticity, involving the relaxation of either the given boundary displacements (Dirichlet data) or the prescribed boundary tractions (Neumann data) on the over-specified boundary, in the alternating iterative algorithm of Kozlov et al. (1991). The two mixed direct (well-posed) problems associated with each iteration are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method, while the optimal value of the regularization parameter is chosen via the generalized cross-validation (GCV) criterion. An efficient regularizing stopping criterion which ceases the iterative procedure at the point where the accumulation of noise becomes dominant and the errors in predicting the exact solutions increase, is also presented. The MFS-based iterative algorithms with relaxation are tested for Cauchy problems for isotropic linear elastic materials in various geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the proposed method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose an iterative estimating equations procedure for analysis of longitudinal data. We show that, under very mild conditions, the probability that the procedure converges at an exponential rate tends to one as the sample size increases to infinity. Furthermore, we show that the limiting estimator is consistent and asymptotically efficient, as expected. The method applies to semiparametric regression models with unspecified covariances among the observations. In the special case of linear models, the procedure reduces to iterative reweighted least squares. Finite sample performance of the procedure is studied by simulations, and compared with other methods. A numerical example from a medical study is considered to illustrate the application of the method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An iterative algorithm baaed on probabilistic estimation is described for obtaining the minimum-norm solution of a very large, consistent, linear system of equations AX = g where A is an (m times n) matrix with non-negative elements, x and g are respectively (n times 1) and (m times 1) vectors with positive components.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper gives a new iterative algorithm for kernel logistic regression. It is based on the solution of a dual problem using ideas similar to those of the Sequential Minimal Optimization algorithm for Support Vector Machines. Asymptotic convergence of the algorithm is proved. Computational experiments show that the algorithm is robust and fast. The algorithmic ideas can also be used to give a fast dual algorithm for solving the optimization problem arising in the inner loop of Gaussian Process classifiers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We address the problem of reconstructing a sparse signal from its DFT magnitude. We refer to this problem as the sparse phase retrieval (SPR) problem, which finds applications in tomography, digital holography, electron microscopy, etc. We develop a Fienup-type iterative algorithm, referred to as the Max-K algorithm, to enforce sparsity and successively refine the estimate of phase. We show that the Max-K algorithm possesses Cauchy convergence properties under certain conditions, that is, the MSE of reconstruction does not increase with iterations. We also formulate the problem of SPR as a feasibility problem, where the goal is to find a signal that is sparse in a known basis and whose Fourier transform magnitude is consistent with the measurement. Subsequently, we interpret the Max-K algorithm as alternating projections onto the object-domain and measurement-domain constraint sets and generalize it to a parameterized relaxation, known as the relaxed averaged alternating reflections (RAAR) algorithm. On the application front, we work with measurements acquired using a frequency-domain optical-coherence tomography (FDOCT) experimental setup. Experimental results on measured data show that the proposed algorithms exhibit good reconstruction performance compared with the direct inversion technique, homomorphic technique, and the classical Fienup algorithm without sparsity constraint; specifically, the autocorrelation artifacts and background noise are suppressed to a significant extent. We also demonstrate that the RAAR algorithm offers a broader framework for FDOCT reconstruction, of which the direct inversion technique and the proposed Max-K algorithm become special instances corresponding to specific values of the relaxation parameter.