994 resultados para isotopic analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present here, an experimental set-up developed for the first time in India for the determination of mixing ratio and carbon isotopic ratio of air-CO2. The set-up includes traps for collection and extraction of CO2 from air samples using cryogenic procedures, followed by the measurement of CO2 mixing ratio using an MKS Baratron gauge and analysis of isotopic ratios using the dual inlet peripheral of a high sensitivity isotope ratio mass spectrometer (IRMS) MAT 253. The internal reproducibility (precision) for the PC measurement is established based on repeat analyses of CO2 +/- 0.03 parts per thousand. The set-up is calibrated with international carbonate and air-CO2 standards. An in-house air-CO2 mixture, `OASIS AIRMIX' is prepared mixing CO2 from a high purity cylinder with O-2 and N-2 and an aliquot of this mixture is routinely analyzed together with the air samples. The external reproducibility for the measurement of the CO2 mixing ratio and carbon isotopic ratios are +/- 7 (n = 169) mu mol.mol(-1) and +/- 0.05 (n = 169) parts per thousand based on the mean of the difference between two aliquots of reference air mixture analyzed during daily operation carried out during November 2009-December 2011. The correction due to the isobaric interference of N2O on air-CO2 samples is determined separately by analyzing mixture of CO2 (of known isotopic composition) and N2O in varying proportions. A +0.2 parts per thousand correction in the delta C-13 value for a N2O concentration of 329 ppb is determined. As an application, we present results from an experiment conducted during solar eclipse of 2010. The isotopic ratio in CO2 and the carbon dioxide mixing ratio in the air samples collected during the event are different from neighbouring samples, suggesting the role of atmospheric inversion in trapping the emitted CO2 from the urban atmosphere during the eclipse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A suitable method for the pretreutment of dissolved nitrate samples in seawaters for nitrogen isotopic analysis was established. First, the seawater samples were processed by removing nitrite and amonium. Then Devard's alloy was added in sample for conversion of dissolved nitrate to ammonium. The sample was distilled, and then the ammonium condensate was collected with zeolite. after distillation, the collected condensate was filtered and prepared for determining nitropic values. Some tests of the method were conducted. The distillation condition, the influence of salinity on nitrogen isotopic analysis, absorption of ammonium onto zeolite and an improved method on a large volume of seawater were discussed in this study. The results showed that the distillation step had an average recovery of (104.9 +/- 4.2) % (n = 6) when distillating every 300 mL aliquot of the sample under a strong alkaline condition with 0.5 g devard's alloy and a distillation time of 30 min. The nitrogen isotopic fractionation decreased markedly when salinity was increased from 0% to 0.5%; further increase(1% - 3.5%) showed little effect. The adsorption rate of ammonium onto zeolite had a high yield of (95.96 +/- 1.08) % (n = 6) in average. An improved collection method was used to process a large volume of seawater with several distillations, and had good effect on analysis. The method had been applied to analyze water samples collected from Changjiang estuary. The analytical results indicate that the method is suitable for delta N-15 analysis of dissolved nitrate in seawaters. The present method could provide valuable information about the source and cycle mechanism of dissolved nitrogen in estuary waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our goal was to trace the inclusion of poultry offal meal (OM) in diets by using carbon (13C/12C) and nitrogen (15N/14N) isotopic ratios of different tissues in order to contribute for the development of an independent technology for the certification of the feeding of broilers reared on diets with no addition of animal ingredients. Eighty one-day-old chicks were randomly distributed into five experimental treatments, that is, diets containing increasing levels of OM inclusion (0, 2, 4, 8 and 16% OM), with four replicates of four birds each. At 42 days of age, four birds per treatment (n=4) were randomly selected, weighed, and sacrificed to collect breast muscle (Pectoralis major), keel and tibia samples to determine their isotopic ratios (13C/12C e 15N/14N). It was observed that 13C and 15N enrichment increased as a function of increasing OM inclusion in all diets. The analyses of the Pectoralis major showed that that only treatments with 8 and 16% OM dietary inclusion were different form those in the control group (0% OM). on the other hand, when the keel and tibia were analyzed, in addition to 8 and 16% OM), the treatment with 4% OM inclusion was also different from the control group. The use of isotopic ratios of stable carbon and nitrogen isotopes is an alternative to trace OM inclusion in broiler diets as it is capable of tracing OM levels below those usually practiced by the poultry industry in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oceanographic and tectonic conditions of accretionary margins are well-suited for several potential processes governing methane generation, storage and release. To identify the relevant methane evolution pathways in the northern Cascadia accretionary margin, a four-site transect was drilled during Integrated Ocean Drilling Program Expedition 311. The d13C values of methane range from a minimum value of -82.2 per mil on an uplifted ridge of accreted sediment near the deformation front (Site U1326, 1829 mbsl, meters below sea level) to a maximum value of -39.5 per mil at the most landward location within an area of steep canyons near the shelf edge (Site U1329, 946 mbsl). An interpretation based solely on methane isotope values might conclude the 13C-enrichment of methane indicates a transition from microbially- to thermogenically-sourced methane. However, the co-existing CO2 exhibits a similar trend of 13C-enrichment along the transect with values ranging from -22.5 per mil to +25.7 per mil. The magnitude of the carbon isotope separation between methane and CO2 (Ec = 63.8 ± 5.8) is consistent with isotope fractionation during microbially mediated carbonate reduction. These results, in conjunction with a transect-wide gaseous hydrocarbon content composed of > 99.8% (by volume) methane and uniform dDCH4 values (-172 per mil ± 8) that are distinct from thermogenic methane at a seep located 60 km from the Expedition 311 transect, suggest microbial CO2 reduction is the predominant methane source at all investigated sites. The magnitude of the intra-site downhole 13C-enrichment of CO2 within the accreted ridge (Site U1326) and a slope basin nearest the deformation front (Site U1325, 2195 mbsl) is ~ 5 per mil. At the mid-slope site (Site U1327, 1304 mbsl) the downhole 13C-enrichment of the CO2 is ~ 25 per mil and increases to ~ 40 per mil at the near-shelf edge Site U1329. This isotope fractionation pattern is indicative of more extensive diagenetic alteration at sites with greater 13C-enrichment. The magnitude of the 13C-enrichment of CO2 correlates with decreasing sedimentation rates and a diminishing occurrence of stratigraphic gas hydrate. We suggest the decreasing sedimentation rates increase the exposure time of sedimentary organic matter to aerobic and anaerobic degradation, during burial, thereby reducing the availability of metabolizable organic matter available for methane production. This process is reflected in the occurrence and distribution of gas hydrate within the northern Cascadia margin accretionary prism. Our observations are relevant for evaluating methane production and the occurrence of stratigraphic gas hydrate within other convergent margins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical and isotopic compositions of sedimentary organic matter (SOM) from two mid-slope sites of the northern Cascadia margin were investigated during Integrated Ocean Drilling Program (IODP) Expedition 311 to elucidate the organic matter origins and identify potential microbial contributions to SOM. Gas hydrate is present at both locations (IODP Sites U1327 and U1328), with distinct patterns of near-seafloor structural accumulations at the cold seep Site U1328 and deeper stratigraphic accumulations at the slope-basin Site U1327. Source characterization and evidence that some components of the organic matter have been diagenetically altered are determined from the concentrations and isotopic compositions of hydrocarbon biomarkers, total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS). The carbon isotopic compositions of TOC (d13C TOC = -26 to -22 per mil) and long-chain n-alkanes (C27, C29 and C31, d13C = -34 to -29 per mil) suggest the organic matter at both sites is a mixture of 1) terrestrial plants that employ the C3 photosynthetic pathway and 2) marine algae. In contrast, the d15N TN values of the bulk sediment (+4 to +8 per mil) are consistent with a predominantly marine source, but these values most likely have been modified during microbial organic matter degradation. The d13C values of archaeal biomarker pentamethylicosane (PMI) (-46.4 per mil) and bacterial-sourced hopenes, diploptene and hop-21-ene (-40.9 to -34.7 per mil) indicate a partial contribution from methane carbon or a chemoautotrophic pathway. Our multi-isotope and biomarker-based conclusions are consistent with previous studies, based only on the elemental composition of bulk sediments, that suggested a mixed marine-terrestrial organic matter origin for these mid-slope sites of the northern Cascadia margin.