965 resultados para isótopo 13C
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study is to determine the natural abundance of carbon stable isotope (13C) of some food components and determine its contribution to the pintado juvenile growth, in laboratory conditions. 150 fishes were used with average weight of 1.39 g, and stocked in two net ponds with 125L each, during 60 days. Every 10 days a water sample was collected to analyse phytoplakton and zooplankton. Clacocera was dominant in the analysis of the stomach contents, following Chironomidae and Copepoda. A fish sample was collected in the beginning, and at the end of the experiment to analyses the isotopic signal. An average value of -20.94; -15.36 and -18.81 δ13C%o was obtained for phytoplankton, Cladocera and Chironomidae, respectively. Cladocera was the main carbon source and contribution with carbon average 89.24% in feeding this species, while the Chironomid contribution was 10.76%. The δ13C was effective as carbon tracer in food chain, because the consumer reflects its diet isotopicly.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nas últimas décadas, a utilização de isótopos estáveis em várias áreas de pesquisa vem se destacando, como na análise de fluxos e rotas metabólicas, análise de efeitos de estresses em plantas e, em grande escala, no estudo da matéria orgânica do solo (MOS). Estudos de alterações e dinâmica da MOS usando a variação da abundância natural do 13C requerem mudanças na razão isotópica do C. Quando não existe essa possibilidade, uma das alternativas é enriquecer o material vegetal (planta) com 13C, via fixação de 13CO2, de modo que a razão isotópica seja distinta daquela da MOS original. O objetivo deste trabalho foi investigar a magnitude e a homogeneidade do enriquecimento em 13C em diferentes componentes da planta de eucalipto. No processo de marcação, três plantas de eucalipto, com 4 meses de idade, cultivadas em solução nutritiva foram expostas a uma atmosfera enriquecida com 13CO2, em uma câmara de vidro (448 dm³), com temperatura em torno de 24 ºC. A concentração de CO2 e a razão 13C/12C foram monitoradas por um espectrômetro de massa de razão isotópica (IRMS) em amostras de ar retiradas ao longo do processo (126 dias com três pulsos de 13CO2 semanais). Após o período de marcação, as plantas foram separadas em folha (folha-fonte e folha-dreno), galho, casca, lenho e raiz e analisadas em IRMS. O resultado foi expresso em partes por mil () em relação ao padrão internacional de C denominado Pee-Dee Belemnite (PDB), obtendo-se a δ13C PDB delas: folha-fonte (828,07 ), folha-dreno (645,72 ), galho (672,49 ), casca (691,86 ), lenho (632,02 ) e raiz (536,55 ). O padrão de alocação e enriquecimento de 13C entre os componentes das plantas foi homogêneo, embora com diferenças numéricas da ordem de 291 na δ13C PDB. As plantas de eucalipto mantiveram alta taxa de absorção de CO2 e, consequentemente, alta taxa fotossintética em concentrações de CO2 muito acima (180,4 mmol L-1 - 7.934 ppmv) da encontrada na atmosfera (8,64 mmol L-1 - 380 ppmv). O 13C fixado durante o dia foi liberado em menor escala na respiração noturna, em comparação com o 12C. O grau de enriquecimento com 13C obtido indica que a técnica empregada permite o enriquecimento suficiente do material para traçar o C em estudos de decomposição e estabilização de litter de eucalipto em frações da MOS.
Resumo:
A study was conducted to determine the optimal time for collecting the breath examination urea breath marked with the stable isotope 13C. We selected patients before undergoing the examination of endoscopy at the Endoscopy Section of the University Hospital of Botucatu - SP. A screening was performed to determine which patients wanted and could participate. Before performing endoscopy basal sample was collected from the patient and then the labeled urea ingested. The blows were collected in double every 2.5 minutes until an interval of 30.0 minutes after were collected every 5.0 minutes until the time of 45.0 minutes . The samples were analyzed in a mass spectrometer for isotope ratio, located in the center of Stable Isotopes, Institute of Biosciences, UNESP - Botucatu campus. The data were studied and arranged in the form of graphics to better interpretation of results. Based on the obtained results it was determined that a standby time of 15.0 minutes to collect the wind is sufficient for accurate diagnosis and effective
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
During the last five decades, as a result of an interaction between natural product chemistry, synthetic organic chemistry, molecular biology and spectroscopy, scientists reached an extraordinary level of comprehension about the natural processes by which living organisms build up complex molecules. In this context, 13C nuclear magnetic resonance spectroscopy, allied with isotopic labeling, played a determinant role. Nowadays, the widespread use of modern NMR techniques allows an even more detailed picture of the biochemical steps by accurate manipulation of the atomic nuclei. This article focuses on the development of such techniques and their impact on biosynthetic studies.
Resumo:
The Steady-State Free Precession (SSFP) sequence has been widely used in low-field and low-resolution imaging NMR experiments to increase the signal-to-noise ratio (s/n) of the signals. Here, we analyzed the Scrambled Steady State - SSS and Unscrambled Steady State - USS sequences to suppress phase anomalies and sidebands of the 13C NMR spectrum acquired in the SSFP regime. The results showed that the application of the USS sequence allowed a uniform distribution of the time interval between pulses (Tp), in the established time range, allowing a greater suppression of phase anomalies and sidebands, when compared with the SSS sequence.
Resumo:
Hydrofluoric acid (HF) was used to pre-treat forest soils of south-east Queensland for assessing the effectiveness of iron (Fe) removal, carbon (C) composition using C-13 cross-polarisation (CP) with magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) before and after the HF pre-treatment, and the improvement of C-13 CPMAS NMR spectra. Soil samples were collected from 4 experimental sites of different soil types, harvest residue management or prescribed burning, and tree species. More than 86% of Fe was in all soil types removed by the HF treatment. The C-13 NMR spectral quality was improved with increased resolution, especially in the alkyl C and O-alkyl C regions, and reduced NMR run-time (1-5 h per sample compared with >20 h per sample without the pre-treatment). The C composition appeared to alter slightly after the pre-treatment, but this might be largely due to improved spectrometer conditions and increased resolution leading to more accurate NMR spectral integration. Organic C recovery after HF pre-treatment varied with soil types and forest management, and soluble soil organic matter (SOM) could be lost during the pre-treatment. The Fourier Transform-Infrared (FT-IR) spectra of HF extracts indicated the preferential removal of carboxylic C groups during the pre-treatment, but this could also be due to adsorbed water on the mineral matter. The NMR spectra revealed some changes in C composition and quality due to residue management and decomposition. Overall, the HF treatment was a useful pre-treatment for obtaining semi-quantitative C-13 CPMAS NMR spectra of subtropical Australian forest soils.
Resumo:
Este estudo tem por objetivo caracterizar os sedimentos superficiais de um sistema de Várzea do Rio Amazonas, quanto a sua granulometria e ao seu teor orgânico, assim como compreender a origem e a hidrodinâmica destes sedimentos. 51 amostras de sedimento superficial foram coletadas na Várzea do Lago Grande de Curuai, localizada na margem direita do Rio Amazonas à aproximadamente 850km da foz. A granulometria, o teor em carbono orgânico e nitrogênio total, a razão entre o carbono e o nitrogênio (C/N), assim como o isótopo estável do carbono (δ13C) e do nitrogênio (δ15N) foram utilisados para este fim. Este estudo colocou em evidência que os sedimentos da várzea são finos, caracterizados principalmente pela presença de silte (médio à fino), seguido de argila e tem como principal fonte o Rio Amazonas e a Formação Alter do Chão. A presença de areia é pequena e extremamente localizada, próxima as áreas de deságue dos igarapés de terra firme que representam sua maior fonte. O teor de matéria orgânica nestes sedimentos varia entre 1,5 à 37% de carbono. Os resultados do isótopo do carbono (13C) e da razão C/N evidenciam a presença de matéria orgânica composta por diferentes fontes: material orgânico terrígeno, macrofítico, solos, material orgânico transportado pelo rio, e um componente fitoplanctônico.
Resumo:
Este estudo teve por objetivo reconstituir as mudanças paleoambientais e paleohidrológicas no baixo Amazonas. Um testemunho de sedimento foi coletado no Lago Santa Ninha, na várzea do Lago Grande de Curuai, localizada na margem direita do Rio Amazonas a aproximadamente 850 km da foz. O teor de água, a granulometria, as datações com carbono 14, os conteúdos de carbono orgânico e nitrogênio total e o isótopo estável do carbono (δ13C) foram utilizados para determinar os processos sedimentares a que o meio esteve submetido. O testemunho estudado possui 270 cm de comprimento que corresponde a um período de 5600 anos cal AP. Este estudo colocou em evidência diferentes ambientes sedimentares: na base do testemunho até 4900 anos cal AP há uma vegetação inundada que foi gradualmente substituida por bancos de gramíneas e por uma planicie com secas sazonais em 4000 anos cal AP até alcançar, desde 600 anos AP as condições atuais deste lago. Estas alterações podem ter ocorrido em decorrência de mudanças no ciclo hidrológico do Rio Amazonas que, por sua vez, também são reflexos de alterações climáticas.
Resumo:
The aim of this study was to determine whether breath 13CO2 measurements could be used to assess the compliance to a diet containing carbohydrates naturally enriched in 13C. The study was divided into two periods: Period 1 (baseline of 4 days) with low 13C/12C ratio carbohydrates. Period 2 (5 days) isocaloric diet with a high 13C/12C ratio (corn, cane sugar, pineapple, millet) carbohydrates. Measurements were made of respiratory gas exchange by indirect calorimetry, urinary nitrogen excretion and breath 13CO2 every morning in post-absorptive conditions, both in resting state and during a 45-min low intensity exercise (walking on a treadmill). The subjects were 10 healthy lean women (BMI 20.4 +/- 1.7 kg/m2, % body fat 24.4 +/- 1.3%), the 13C enrichment of oxidized carbohydrate and breath 13CO2 were compared to the enrichment of exogenous dietary carbohydrates. At rest the enrichment of oxidized carbohydrate increased significantly after one day of 13C carbohydrate enriched diet and reached a steady value (103 +/- 16%) similar to the enrichment of exogenous carbohydrates. During exercise, the 13C enrichment of oxidized carbohydrate remained significantly lower (68 +/- 17%) than that of dietary carbohydrates. The compliance to a diet with a high content of carbohydrates naturally enriched in 13C may be assessed from the measurement of breath 13CO2 enrichment combined with respiratory gas exchange in resting, postabsorptive conditions.
Resumo:
The recent developments in high magnetic field 13C magnetic resonance spectroscopy with improved localization and shimming techniques have led to important gains in sensitivity and spectral resolution of 13C in vivo spectra in the rodent brain, enabling the separation of several 13C isotopomers of glutamate and glutamine. In this context, the assumptions used in spectral quantification might have a significant impact on the determination of the 13C concentrations and the related metabolic fluxes. In this study, the time domain spectral quantification algorithm AMARES (advanced method for accurate, robust and efficient spectral fitting) was applied to 13 C magnetic resonance spectroscopy spectra acquired in the rat brain at 9.4 T, following infusion of [1,6-(13)C2 ] glucose. Using both Monte Carlo simulations and in vivo data, the goal of this work was: (1) to validate the quantification of in vivo 13C isotopomers using AMARES; (2) to assess the impact of the prior knowledge on the quantification of in vivo 13C isotopomers using AMARES; (3) to compare AMARES and LCModel (linear combination of model spectra) for the quantification of in vivo 13C spectra. AMARES led to accurate and reliable 13C spectral quantification similar to those obtained using LCModel, when the frequency shifts, J-coupling constants and phase patterns of the different 13C isotopomers were included as prior knowledge in the analysis.
Resumo:
RATIONALE: AICAR (5-aminoimidazole-4-carboxamide 1β-D-ribofuranoside) is prohibited in sport according to rules established by the World Anti-Doping Agency. Doping control laboratories identify samples where AICAR abuse is suspected by measuring its urinary concentration and comparing the observed level with naturally occurring concentrations. As the inter-individual variance of urinary AICAR concentrations is large, this approach requires a complementary method to unambiguously prove the exogenous origin of AICAR. Therefore, a method for the determination of carbon isotope ratios (CIRs) of urinary AICAR has been developed and validated. METHODS: Concentrated urine samples were fractionated by means of liquid chromatography for analyte cleanup. Derivatization of AICAR yielding the trimethylsilylated analog was necessary to enable CIR determinations by gas chromatography/combustion/isotope ratio mass spectrometry. The method was tested for its repeatability and stability over time and a linear mixing model was applied to test for possible isotopic discrimination. A reference population of n = 63 males and females was investigated to calculate appropriate reference limits to differentiate endogenous from exogenous urinary AICAR. These limits were tested by an AICAR elimination study. RESULTS: The developed method fulfills all the requirements for adequate sports drug testing and was found to be fit for purpose. The investigated reference population showed a larger variability in the CIR of AICAR than of the endogenous steroids. Nevertheless, the calculated thresholds for differences between AICAR and endogenous steroids can be applied straightforwardly to evaluate suspicious doping control samples with the same statistical confidence as established e.g. for testosterone misuse. These thresholds enabled the detection of a single oral AICAR administration for more than 40 h. CONCLUSIONS: Determination of thee CIRs is the method of choice to distinguish between an endogenous and an exogenous source of urinary AICAR. The developed method will enable investigations into doping control samples with elevated urinary concentrations of AICAR and clearly differentiate between naturally produced/elevated and illicitly administered AICAR.
Resumo:
Rare earth elements (REE) and stable isotope compositions (delta C-13 and delta O-18) of shark teeth and phosphatic coprolites were analyzed from the Lower Maastrichtian layers of the El Haria Formation and two sequences of the Paleocene-Eocene (P/E) Chouabine Formation in the Gafsa Basin (south western of Tunisia) in order to trace the sedimentological, climatic and oceanographic conditions. The REE chemistry and their distribution in the two archives are the same for each of the studied layers indicating that the coprolites and shark teeth experienced the same early diagenetic environments. However major differences occur between the Maastrichtian and the P/E reflecting changes in the depositional conditions. The Early Maastrichtian burial environment tended to be more anoxic with REE derived from reduced FeO. While in the P/E the REE patterns mimic the modern oxic-suboxic seawater, the REE source from remineralisation of organic coating could have more significance. The oxygen isotope compositions of the structural phosphates (delta O-18(PO4)) indicate a stable and warm climate during both studied time intervals. A small offset (-0.4 parts per thousand) in the delta O-18 value between the coprolites and shark teeth show minor thermal gradient between bottom and surface water. The pronounced negative shift of 34%. in delta C-13 values recorded in the upper part of the Chouabine Formation was ascribed to the Paleocene-Eocene boundary. At the same time the lack of negative change in the delta O-18 is explained by the semi-closed situation of the Gafsa Basin, which situation also played an important role in the evolution of the organic matters in the sediment resulting in the exceptional low delta C-13 values. (C) 2008 Elsevier B.V. All rights reserved.