999 resultados para irradiation field


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boron neutron capture therapy (BNCT) is a radiotherapy that has mainly been used to treat malignant brain tumours, melanomas, and head and neck cancer. In BNCT, the patient receives an intravenous infusion of a 10B-carrier, which accumulates in the tumour area. The tumour is irradiated with epithermal or thermal neutrons, which result in a boron neutron capture reaction that generates heavy particles to damage tumour cells. In Finland, boronophenylalanine fructose (BPA-F) is used as the 10B-carrier. Currently, the drifting of boron from blood to tumour as well as the spatial and temporal accumulation of boron in the brain, are not precisely known. Proton magnetic resonance spectroscopy (1H MRS) could be used for selective BPA-F detection and quantification as aromatic protons of BPA resonate in the spectrum region, which is clear of brain metabolite signals. This study, which included both phantom and in vivo studies, examined the validity of 1H MRS as a tool for BPA detection. In the phantom study, BPA quantification was studied at 1.5 and 3.0 T with single voxel 1H MRS, and at 1.5 T with magnetic resonance imaging (MRSI). The detection limit of BPA was determined in phantom conditions at 1.5 T and 3.0 T using single voxel 1H MRS, and at 1.5 T using MRSI. In phantom conditions, BPA quantification accuracy of ± 5% and ± 15% were achieved with single voxel MRS using external or internal (internal water signal) concentration references, respectively. For MRSI, a quantification accuracy of <5% was obtained using an internal concentration reference (creatine). The detection limits of BPA in phantom conditions for the PRESS sequence were 0.7 (3.0 T) and 1.4 mM (1.5 T) mM with 20 × 20 × 20 mm3 single voxel MRS, and 1.0 mM with acquisition-weighted MRSI (nominal voxel volume 10(RL) × 10(AP) × 7.5(SI) mm3), respectively. In the in vivo study, an MRSI or single voxel MRS or both was performed for ten patients (patients 1-10) on the day of BNCT. Three patients had glioblastoma multiforme (GBM), and five patients had a recurrent or progressing GBM or anaplastic astrocytoma gradus III, and two patients had head and neck cancer. For nine patients (patients 1-9), MRS/MRSI was performed 70-140 min after the second irradiation field, and for one patient (patient 10), the MRSI study began 11 min before the end of the BPA-F infusion and ended 6 min after the end of the infusion. In comparison, single voxel MRS was performed before BNCT, for two patients (patients 3 and 9), and for one patient (patient 9), MRSI was performed one month after treatment. For one patient (patient 10), MRSI was performed four days before infusion. Signals from the tumour spectrum aromatic region were detected on the day of BNCT in three patients, indicating that in favourable cases, it is possible to detect BPA in vivo in the patient’s brain after BNCT treatment or at the end of BPA-F infusion. However, because the shape and position of the detected signals did not exactly match the BPA spectrum detected in the in vitro conditions, assignment of BPA is difficult. The opportunity to perform MRS immediately after the end of BPA-F infusion for more patients is necessary to evaluate the suitability of 1H MRS for BPA detection or quantification for treatment planning purposes. However, it could be possible to use MRSI as criteria in selecting patients for BNCT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

对紫外激光诱导近化学计量比钽酸锂晶体铁电畴反转进行了实验研究。波长为351 nm的连续紫外激光被聚焦在近化学计量比钽酸锂晶体的-z表面,同时沿与晶体自发极化相反的方向施加均匀外电场。实验证实紫外激光辐照可以有效地降低晶体畴反转所需的矫顽电场,采用数字全息干涉测量技术检测证实在激光辐照区域实现局域畴反转。研究表明采用紫外激光诱导可以实现对近化学计量比钽酸锂晶体铁电畴反转的局域控制。提出了物理机理的理论分析,认为外电场和激光辐照场的共同作用在晶体内部产生高浓度、大尺寸的缺陷结构,缺陷一定程度上降低畴体成核和畴

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within the wavelength range from 351 to 799 nm, the different reductions of nucleation field induced by the focused continuous laser irradiation are achieved in the 5 mol % MgO-doped congruent LiNbO3 crystals. The reduction proportion increases exponentially with decreasing irradiation wavelength and decreases exponentially with increasing irradiation wavelength. At one given wavelength, the reduction proportion increases exponentially with increasing irradiation intensity. An assumption is proposed that the reduction of nucleation field is directly related to the defect structure of crystal lattice generated by the complex coaction of incident irradiation field and external electric field. (c) 2007 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the first time the physical properties of therapeutic carbon-ion beam supplied by, the shallow-seated tumor therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL) are measured. For a 80.55MeV/u C-12 ion beam delivered to the therapy terminal, the homogeneity of irradiation fields is 73.48%, when the beam intensity varied in the range of 0.001-0.1nA (i.e. 1 X 10(6) - 1 X 10(8) particles per second). The stability of the beam intensity within a few minutes is estimated to be 80.87%. The depth-dose distribution of the beam at the isocenter of the therapy facility is measured, and the position of the high-dose Bragg peak is found to be located at the water-equivalent depth of 13.866mm. Based on the relationship between beam energy and Bragg peak position, the corresponding beam energy at the isocenter of the therapy terminal is evaluated to be 71.71MeV/u for the original 80.55MeV/u C-12 ion beam, which consisted basically with calculation. The readout of the previously-used air-free ionization chamber regarding absorbed dose is calibrated as well in this experiment. The results indicate that the performance of the therapy facility should be optimized further to meet the requirements of clinical trial.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

WE have designed a dual-beam magneto-optical (MO) storage system to test the dynamic storage properties of MO disks. The characteristics of this dual-beam system are demonstrated. Magnetic field modulated direct overwrite, which is a promising technique for highspeed MO storage, is realized on TbFeCo MO disks with this dual-beam MO system. The effect of light intensity, magnetic field intensity, and linear velocity of the disk and the modulating frequency variation on carrier-to-noise ratio is investigated. (C) 1997 Society of Photo-Optical Instrumentation Engineers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrated a controllable tuning of the electronic characteristics of ZnO nanowire field effect transistors (FETs) using a high-energy proton beam. After a short proton irradiation time, the threshold voltage shifted to the negative gate bias direction with an increase in the electrical conductance, whereas the threshold voltage shifted to the positive gate bias direction with a decrease in the electrical conductance after a long proton irradiation time. The electrical characteristics of two different types of ZnO nanowires FET device structures in which the ZnO nanowires are placed on the substrate or suspended above the substrate and photoluminescence (PL) studies of the ZnO nanowires provide substantial evidence that the experimental observations result from the irradiation-induced charges in the bulk SiO(2) and at the SiO(2)/ZnO nanowire interface, which can be explained by a surface-band-bending model in terms of gate electric field modulation. Our study on the proton-irradiation-mediated functionalization can be potentially interesting not only for understanding the proton irradiation effects on nanoscale devices, but also for creating the property-tailored nanoscale devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the UV photoconductivity characteristics of ZnO nanowire field effect transistors (FETs) irradiated by proton beams. After proton beam irradiation (using a beam energy of 10 MeV and a fluence of 10 12 cm -2), the drain current and carrier density in the ZnO nanowire FETs decreased, and the threshold voltage shifted to the positive gate bias direction due to the creation of interface traps at the SiO 2/ZnO nanowire interface by the proton beam. The interface traps produced a higher surface barrier potential and a larger depletion region at the ZnO nanowire surface, affecting the photoconductivity and its decay time. The UV photoconductivity of the proton-irradiated ZnO nanowire FETs was higher and more prolonged than that of the pristine ZnO nanowire FETs. The results extend our understanding of the UV photoconductivity characteristics of ZnO nanowire devices and other materials when irradiated with highly energetic particles. © 2012 Elsevier B.V. All rights reserved.