960 resultados para iron-based coagulants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of rapid solidification on the ordering reaction in Fe---Si and Fe---Al alloys has been reported. It is shown that rapid solidification can influence the ordering reaction in alloys with higher critical ordering temperatures. For ordering reactions at lower temperatures, the effect is similar to that of solid-state quenching. Different factors influencing the ordering reactions and domain structures during rapid solidification of iron-based alloys are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in situ carbon-grafted alkaline iron electrode prepared from the active material obtained by decomposing the alpha-FeC2O4 center dot 2H(2)O-polyvinyl alcohol (PVA) composite at 600 degrees C in a vacuum is reported. The active material comprises a mixture of a-Fe and Fe3O4 with the former as the prominent component. A specific discharge capacity in excess of 400 mA h g(-1) at a current density of 100 mA g(-1) is obtained with a faradaic efficiency of 80% for the iron electrode made from carbon-grafted active material (CGAM). The enhanced performance of the alkaline iron electrode is attributed to the increased amount of metallic iron in the active material and its concomitant in situ carbon grafting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rechargeable batteries have been the torchbearer electrochemical energy storage devices empowering small-scale electronic gadgets to large-scale grid storage. Complementing the lithium-ion technology, sodium-ion batteries have emerged as viable economic alternatives in applications unrestricted by volume/weight. What is the best performance limit for new-age Na-ion batteries? This mission has unravelled suites of oxides and polyanionic positive insertion (cathode) compounds in the quest to realize high energy density. Economically and ecologically, iron-based cathodes are ideal for mass-scale dissemination of sodium batteries. This Perspective captures the progress of Fe-containing earth-abundant sodium battery cathodes with two best examples: (i) an oxide system delivering the highest capacity (similar to 200 mA h/g) and (ii) a polyanionic system showing the highest redox potential (3.8 V). Both develop very high energy density with commercial promise for large-scale applications. Here, the structural and electrochemical properties of these two cathodes are compared and contrasted to describe two alternate strategies to achieve the same goal, i.e., improved energy density in Fe-based sodium battery cathodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high toughness wear resistant coating is produced by laser clad Fe-Cr-W-Ni-C alloys. The microstructural and compositional features of the laser-solidified microstructures and phase evolutions occurring during high temperature tempering at 963 K were investigated by using analytical electron microscopy with energy dispersive X-ray analysis. The clad coating possesses the hypereutectic microstructure consisted of M7C3 + (Y + M7C3) Du ring high temperature aging, the precipitation of M23C6 and M2C in austenite and in situ transformation of dendritic M7C3 to M23C6 and eutectic M7C3 to M6C occurred. The laser clad coating reveals an evident secondary hardening and superior impact wear resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructural and compositional features of the laser-solidified microstructures and phase evolutions occurring during high temperature tempering were investigated by using analytical electron microscopy with energy dispersive X-ray analysis. The cladded alloy, a powder mixture of Fe, Cr, W, Ni and C with a weight ratio of 10:5:1:1:1, was processed with a 3 kW continuous wave CO2 laser. The cladded coating possessed the hypoeutectic microstructure of the primary dendritic gamma-austenite and interdendritic eutectic consisting of (gamma+M7C3). The gamma-austenite is a nonequilibrium phase with extended solid solution of alloying elements. And, a great deal of fine structures, i.e., a high density of dislocations, twins, and stacking faults existed in austenite phase. During high temperature aging, the precipitation of M23C6, MC and M2C in austenite and in situ transformation of M7C3(+gamma) --> M23C6 and M7C3+gamma --> M6C occurred. The laser clad coating revealed an evident secondary hardening and superior impact wear resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapidly solidified microstructural and compositional features, the precipitation and transformation of carbides during tempering, and the impact wear resistance of an iron-based alloy coating prepared by laser cladding are investigated. The clad coating alloy, a powder mixture of Fe, Cr, W, Ni, and C with a weight ratio of 10:5:1.1.1, is processed using a continuous wave CO, laser. Microstructural studies demonstrate that the coating possesses the hypoeutectic microstructure comprising the primary dendritic gamma-austenite and interdendritic eutectic consisting of gamma-austenite and M7C3 carbides. gamma-Austenite is a non-equilibrium phase with an extended solid solution of alloying elements. During high temperature tempering at 963 K for 1 h, the precipitation of M23C6, MC and M2C carbides in austenite and in situ carbide transformation of M7C3 to M23C6 and M7C3 to M6C respectively are observed. In addition, the microstructure of the laser-clad coating reveals an evident secondary hardening and a superior impact wear resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallic glass has since its debut been of great research interest due to its profound scientific significance. Magnetic metallic glasses are of special interest because of their promising technological applications. In this thesis, we introduced a novel series of Fe-based alloys and offer a holistic review of the physics and properties of these alloys. A systematic alloy development and optimization method was introduced, with experimental implementation on transition metal based alloying system. A deep understanding on the influencing factors of glass forming ability was brought up and discussed, based on classical nucleation theory. Experimental data of the new Fe-based amorphous alloys were interpreted to further analyze those influencing factors, including reduced glass transition temperature, fragility, and liquid-crystal interface free energy. Various treatments (fluxing, overheating, etc.) were discussed for their impacts on the alloying systems' thermodynamics and glass forming ability. Multiple experimental characterization methods were discussed to measure the alloys' soft magnetic properties. In addition to theoretical and experimental investigation, we also gave a detailed numerical analysis on the rapid-discharge-heating-and-forming platform. It is a novel experimental system which offers extremely fast heating rate for calorimetric characterization and alloy deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of counter-ions on the coagulation of biologically treated molasses wastewater using iron-based coagulants was investigated. Parameters such as removals of chemical oxygen demand (COD) and color, and residual turbidity, were measured to evaluate coagulation performance. Experimental results showed that ferric chloride and ferric nitrate were more effective than ferric sulfate at optimal dosages, achieving 89 to 90% and 98 to 99% of COD and color removals, respectively, with residual turbidity of less than 5 NTU. High-performance size exclusion chromatography (HPSEC) results revealed differences in the removal of the molecular weight fraction of organic compounds using iron salts. Scanning electron microscopy (SEM) showed randomly formed coagulated flocs characterized with irregular, sheet-like shapes. Nitrate and chloride counter-ions had similar effects on coagulation performance compared to sulfate. Both FeCl3 and Fe(NO3)(3) yielded better results than Fe(SO4)(2) under underdosed and optimum dosage conditions. Coagulation efficiency was less adversely affected in the overdosed regions, however, if sulfate rather than chloride or nitrate was present. Water Environ. Res., 81, 2293 (2009).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical-looping combustion (CLC) has the inherent property of separating the product CO2 from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. All techniques so far proposed for chemical looping with solid fuels involve initially the gasification of the solid fuel in order for the gaseous products to react with the oxygen carrier. Here, the rates of gasification of coal were compared when gasification was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. This enabled an examination of the ability of chemical looping materials to enhance the rate of gasification of solid fuels. Batch gasification and chemical-looping combustion experiments with a German lignite and its char are reported, using an electrically-heated fluidised bed reactor at temperatures from 1073 to 1223 K. The fluidising gas was CO2 in nitrogen. The kinetics of the gasification were found to be significantly faster in the presence of the oxygen carrier, especially at temperatures above 1123 K. A numerical model was developed to account for external and internal mass transfer and for the effect of the looping agent. The model also included the effects of the evolution of the pore structure at different conversions. The presence of Fe2O3 led to an increase in the rate of gasification because of the rapid oxidation of CO by the oxygen carrier to CO2. This resulted in the removal of CO and maintained a higher mole fraction of CO2 in the mixture of gas around the particle of char, i.e. within the mass transfer boundary layer surrounding the particle. This effect was most prominent at about 20% conversion when (i) the surface area for reaction was at its maximum and (ii) because of the accompanying increase in porosity and pore size, intraparticle resistance to gas mass transfer within the particle of char had fallen, compared with that in the initial particle. Excellent agreement was observed between the rates predicted by the numerical model and those observed experimentally. ©2013 Elsevier Ltd. All rights reserved.