4 resultados para ionomics
Resumo:
FUNDING UK Biotechnology and Biological Sciences Research Council grant BB/L027739/1 and BB/L000113/1 (to D.E.S.), the US National Institutes of Health grant 2R01GM078536 (to D.E.S.), and the US National Science Foundation grant IOB 0419695 (to D.E.S.) ACKNOWLEDGMENTS We wish to thank our collaborators Mary Lou Guerinot, Niko Geldner, and Christian Hermans for kindly allowing us to incorporate in this update unpublished data on BRUTUS, SGN1, and SGN3, respectively. We also thank Mary Lou Guerinot, Niko Geldner, Takehiro Kamiya, and the ERACAPS Root Barrier project for productive discussions relating to ionomics and the plant ionome. No conflict of interest declared.
Resumo:
Research into the composition of cereal grains is motivated by increased interest in food quality. Here multi-element analysis is conducted on leaves and grain of the Bala x Azucena rice mapping population grown in the field. Quantitative trait loci (QTLs) for the concentration of 17 elements were detected, revealing 36 QTLs for leaves and 41 for grains. Epistasis was detected for most elements. There was very little correlation between leaf and grain element concentrations. For selenium, lead, phosphorus and magnesium QTLs were detected in the same location for both tissues. In general, there were no major QTL clusters, suggesting separate regulation of each element. QTLs for grain iron, zinc, molybdenum and selenium are potential targets for marker assisted selection to improve seed nutritional quality. An epistatic interaction for grain arsenic also looks promising to decrease the concentration of this carcinogenic element. © Springer Science+Business Media B.V. 2009.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)