643 resultados para ionic Liquids (ILs)
Resumo:
This work describes an easy synthesis (one pot) of MFe(2)O(4) (M = Co, Fe, Mn, and Ni) magnetic nanoparticles MNPs by the thermal decomposition of Fe(Acac)(3)/M(Acac)(2) by using BMI center dot NTf(2) (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) or BMI center dot PF(6) (1-n-butyl-3-methylimidazolium hexafluorophosphate) ionic liquids (ILs) as recycling solvents and oleylamine as the reducing and surface modifier agent. The effects of reaction temperature and reaction time on the features of the magnetic nanomaterials (size and magnetic properties) were investigated. The growth of the MNPs is easily controlled in the IL by adjusting the reaction temperature and time, as inferred from Fe(3)O(4) MNPs obtained at 150 degrees C, 200 degrees C and 250 degrees C with mean diameters of 8, 10 and 15 nm, respectively. However, the thermal decomposition of Fe(Acac)(3) performed in a conventional high boiling point solvent (diphenyl ether, bp 259 degrees C), under a similar Fe to oleylamine molar ratio used in the IL synthesis, does not follow the same growth mechanism and rendered only smaller NPs of 5 nm mean diameter. All MNPs are covered by at least one monolayer of oleylamine making them readily dispersible in non-polar solvents. Besides the influence on the nanoparticles growth, which is important for the preparation of highly crystalline MNPs, the IL was easily recycled and has been used in at least 20 successive syntheses.
Resumo:
The thermo-solvatochromism of 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr(2), has been studied in mixtures of water, W, with ionic liquids, ILs, in the temperature range of 10 to 60 degrees C, where feasible. The objectives of the study were to test the applicability of a recently introduced solvation model, and to assess the relative importance of solute-solvent solvophobic interactions. The ILs were 1-allyl-3-alkylimidazolium chlorides, where the alkyl groups are methyl, 1-butyl, and 1-hexyl, respectively. The equilibrium constants for the interaction of W and the ILs were calculated from density data; they were found to be linearly dependent on N(C), the number of carbon atoms of the alkyl group; van't Hoff equation (log K versus 1/T) applied satisfactorily. Plots of the empirical solvent polarities, E(T) (MePMBr(2)) in kcal mol(-1), versus the mole fraction of water in the binary mixture, chi(w), showed non-linear, i.e., non-ideal behavior. The dependence of E(T) (MePMBr(2)) on chi(w), has been conveniently quantified in terms of solvation by W, IL, and the ""complex"" solvent IL-W. The non-ideal behavior is due to preferential solvation by the IL and, more efficiently, by IL-W. The deviation from linearity increases as a function of increasing N(C) of the IL, and is stronger than that observed for solvation of MePMBr(2) by aqueous 1-propanol, a solvent whose lipophilicity is 12.8 to 52.1 times larger than those of the ILs investigated. The dependence on N(C) is attributed to solute-solvent solvophobic interactions, whose relative contribution to solvation are presumably greater than that in mixtures of water and 1-propanol.
Resumo:
In recent years ionic liquids (ILs) have been increasing the popularity and the number of applications. Ionic liquids were used mainly as solvent in organic synthesis, but in recent years they are also used in analytical chemistry, separation chemistry and material science. Additional to significant developments in their chemical properties and applications, ionic liquids are now bringing unexpected opportunities at the interface of chemistry with the life sciences. Ionic liquids (ILs) are currently defined as salts that are composed solely of cations and anions which melt below 100ºC. Our goal in this work is to explore the dual activity of the ionic liquids, due to the presence of two different ions, an anion with bacterial activity as β-lactam antibiotics and different kinds of cations. In this work the anions of ILs and salts were derived from three different antibiotics: ampicillin, penicillin and amoxicillin. The cations were derived from substituted ammonium, phosphonium pyridinium and methylimidazolium salts, such as: tetraethyl ammonium, trihexiltetradecilphosphonium, cetylpyridinium, choline (an essential nutrient), 1-ethyl-3-methylimidazolium, and 1-ethanol-3-methyl imidazolium structures. Commercial ammonium and phosponium halogen salts were first transformed into hydroxides on ionic exchange column (Amberlite IRA-400) in methanol. The prepared hydroxides were then neutralized with β-lactam antibiotics. After crystallization we obtained pure ILs and salts containing β-lactam antibiotics. This work presents a novel method for preparation of new salts of antibiotics with low melting point and their chemistry and microbiological characterization.
Resumo:
Valproic acid (2-propyl pentanoic acid) is a pharmaceutical drug used for treatment of epileptic seizures absence, tonic-clonic (grand mal), complex partial seizures, and mania in bipolar disorder [1]. Valproic acid is a slightly soluble in water and therefore as active pharmaceutical ingredient it is most commonly applied in form of sodium or magnesium valproate salt [1].However the list of adverse effects of these compounds is large and includes among others: tiredness, tremor, sedation and gastrointestinal disturbances [2]. Ionic liquids (ILs) are promising compounds as Active Pharmaceutical Ingredients (APIs)[3]. In this context, the combinations of the valproate anion with appropriate cation when ILs and salts are formed can significantly alter valproate physical, chemical and thermal properties.[4] This methodology can be used for drug modification (alteration of drug solubility in water, lipids, bioavailability, etc)[2] and therefore can eliminate some adverse effect of the drugs related to drug toxicity due for example to its solubility in water and lipids (interaction with intestines). Herein, we will discuss the development of ILs based on valproate anion (Figure 1) prepared according a recent optimized and sustainable acid-base neutralization method [4]. The organic cations such as cetylpyridinium, choline and imidazolium structures were selected based on their biocompatibility and recent applications in pharmacy [3]. All novel API-ILs based on valproate have been studied in terms of their physical, chemical (viscosity, density, solubility) and thermal (calorimetric studies) properties as well as their biological activity.
Resumo:
Ionic Liquids (ILs) are ionic compounds that possess melting temperature below 100ºC and they have been a topic of great interest since the mid-1990s due to their unique properties. The range of IL uses has been broadened, due to a significant increase in the variety of physical, chemical and biological ILs properties. They are now used as Active Pharmaceutical Ingredients (APIs) and recent interests are focused on their application as innovative solutions in new medical treatment and delivery options.1 In this work, our principal objective was the synthesis and investigation of physicochemical and medical properties of ionic liquids (ILs) and organic salts from ampicillin. This approach is of huge interest in pharmaceutical industry as cation and anion composition of ILs and organic salts can greatly alter their desired properties, namely the melting temperature and even synergistic effects can be obtained.2,3 For the synthesis of these compounds we used a recently developed method proposed by Ohno et al.4 for the preparation of quaternary ammonium and phosphonium hydroxides, that were neutralized by ampicillin. After purification we obtained pure ILs and salts in good yields. These ILs shows good antimicrobial and antifungal activities. As it is well known that some ionic liquids containing phosphonium and ammonium cation also shows anti-cancer activity1,5 we also decided to study these compounds against some cancer cell lines.
Resumo:
With the increase of bacterial resistance a large number of therapeutic strategies have been used to fight different kind of infections. In recent years ionic liquids (ILs) have been increasing the popularity and the number of applications. First ionic liquids were used mainly as solvent in organic synthesis, but now they are used in analytical chemistry, separation chemistry and material science among others. Additional to significant developments in their chemical properties and applications, ionic liquids are now bringing unexpected opportunities at the interface of chemistry with the life sciences Ionic liquids (ILs) are currently defined as salts that are composed solely of cations and anions which melt below 100ºC. Our goal in this work is to explore the dual activity of the ionic liquids, due to the presence of two different ions, an ion with bacterial activity as a beta-lactam antibiotic and different kinds of cations. In this work the anions of ILs and salts were derived from three different antibiotics: ampicillin, penicillin and amoxicillin. The cations were derived from substituted ammonium, phosphonium pyridinium and methylimidazolium salts, such as: tetraethyl ammonium, trihexiltetradecilphosphonium, cetylpyridinium, choline (an essential nutrient), 1-ethyl-3-methylimidazolium, and 1-ethanol-3-methyl imidazolium structures. Commercial ammonium and phosponium halogen salts were first transformed into hydroxides. on ionic exchange column (Amberlite IRA-400) in methanol. The prepared hydroxides were then neutralized with beta-lactam antibiotics. After crystallization we obtained pure ILs and salts containing beta-lactam antibiotics. This work presents a novel method for preparation of new salts of antibiotics with low melting point and their characterization.
Resumo:
There is an interest to create zinc/tin alloys to replace cadmium as a corrosion protective coating material. Existing aqueous electroplating systems for these alloys are commercially available but have several limitations. Dangerous and highly toxic complexing agents are uses e.g. cyanides. To overcome these problems, ionic liquids could provide a solution to obtain an alloy containing 20 to 30% of zinc. Ionic liquids (IL’s) often have wider electrochemical windows which allow the deposition of e.g. refractive metals that can not be deposited from aqueous solutions. In IL’s it is often not necessary to add complexing agents. The Zn/Sn alloy deposition from IL’s is therefore a promising application for the plating industry. Nevertheless, there are some issues with this alternative for aqueous systems. The degradation of the organic components, the control of the concentration of two metals and the risk of a two phase deposition instead of an alloy had to be overcome first. It is the main purpose of this thesis to obtain a Zn/Sn alloy with 20% zinc using IL’s as an electrolyte. First a separate study was performed on both the zinc and the tin deposition. Afterwards, an attempt to deposit a Zn/Sn alloy was made. An introduction to a study about the electrodeposition of refractive metals concludes this work. It initiated the research for oxygen-free IL’s to deposit molybdenum or tungsten. Several parameters (temperature, metal source and concentration, organic complexing agents,…) were optimized for both the zinc, tin and zinc/tin deposition. Experiments were performed both in a parallel plate cell and a Hull cell, so as to investigate the effect of current density as well. Ethaline200 was selected as electrolyte. As substrate, brass and iron were selected, while as anode a plate of the metal to deposit was chosen, tin for the alloy. The best efficiencies were always obtained on brass; however the iron substrate resulted in the best depositions. A concentration of 0.27M ZnCl2, 0.07M SnCl2 with 0.015M of K3-HEDTA as complexant resulted in a deposition containing the desired alloy with the amount of 20% zinc and 80% tin with good appearance. Refractory metals as molybdenum and tungsten cannot be electrodeposited from aqueous solutions without forming a co-deposition with Ni, Co or Fe. Here, IL’s could again provide a solution. A first requirement is the dissolution of a metal source. MoO3 could be suitable, however there are doubts about using oxides. Oxygen-free IL’s were sought for. A first attempt was the combination of ZnCl2 with chlormequat (CCC), which gave liquids below 150°C in molar ratios of 2 : 1 and 3 : 1. Unfortuna tely, MoO3 didn’t dissolve in these IL’s. Another route to design oxygen-free IL’s was the synthesis of quaternary ammonium salts. None of the methods used, proved viable as reaction time was long and resulted in very low yields. Therefore, no sufficient quantities were obtained to perform the possible electrochemical behavior of refractive metals.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Química, especialidade de Operações Unitárias e Fenómenos de Transferência, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Phenolic acids are aromatic secondary plant metabolites, widely spread throughout the plant kingdom. Due to their biological and pharmacological properties, they have been playing an important role in phytotherapy and consequently techniques for their separation and purification are in need. This thesis aims at exploring new sustainable separation processes based on ionic liquids (ILs) in the extraction of biologically active phenolic acids. For that purpose, three phenolic acids with similar chemical structures were selected: cinnamic acid, p-coumaric acid and caffeic acid. In the last years, it has been shown that ionic liquids-based aqueous biphasic systems (ABSs) are valid alternatives for the extraction, recovery and purification of biomolecules when compared to conventional ABS or extractions carried out with organic solvents. In particular, cholinium-based ILs represent a clear step towards a greener chemistry, while providing means for the implementation of efficient techniques for the separation and purification of biomolecules. In this work, ABSs were implemented using cholinium carboxylate ILs using either high charge density inorganic salt (K3PO4) or polyethylene glycol (PEG) to promote the phase separation of aqueous solutions containing three different phenolic acids. These systems allow for the evaluation of effect of chemical structure of the anion on the extraction efficiency. Only one imidazolium-based IL was used in order to establish the effect of the cation chemical structure. The selective extraction of one single acid was also researched. Overall, it was observed that phenolic acids display very complex behaviours in aqueous solutions, from dimerization to polymerization and also hetero-association are quite frequent phenomena, depending on the pH conditions. These phenomena greatly hinder the correct quantification of these acids in solution.
Resumo:
Ionic Liquids (ILs) belong to a class of compounds with unusual properties: very low vapour pressure; high chemical and thermal stability and the ability to dissolve a wide range of substances. A new field in research is evaluating the possibility to use natural chiral biomolecules for the preparation of chiral ionic liquids (CILs). This important challenge in synthetic chemistry can open new avenues of research in order to avoid some problems related with the intrinsic biodegradability and toxicity associated to conventional ILs. The research work developed aimed for the synthesis of CILs, their characterization and possible applications, based on biological moieties used either as chiral cations or anions, depending on the synthetic manipulation of the derivatives. Overall, a total of 28 organic salts, including CILs were synthesized: 9 based on L-cysteine derivatives, 12 based on L-proline, 3 based on nucleosides and 4 based on nucleotides. All these new CILs were completely characterized and their chemical and physical properties were evaluated. Some CILs based on L-cysteine have been applied for discrimination processes, including resolution of racemates and as a chiral catalyst for asymmetric Aldol condensation. L-proline derived CILs were also studied as chiral catalysts for Michael reaction. In parallel, the interactions of macrocyclic oligosugars called cyclodextrins (CDs) with several ILs were studied. It was possible to improve the solubility of CDs in water and serum. Additionally, fatty acids and steroids showed an increase in water solubility when ILs-CDs systems were used. The development of efficient and selective ILs-CDs systems is indispensable to expand the range of their applications in host-guest interactions, drug delivery systems or catalytic reactions. Novel salts derived from nucleobases were used in order to enhance the fluorescence in aqueous solution. Additionally, preliminary studies regarding ethyl lactate as an alternative solvent for asymmetric organocatalysis were performed.
Resumo:
Ionic Liquids (ILs) are class of compounds, which have become popular since the mid-1990s. Despite the fact that ILs are defined by one physical property (melting point), many of the potential applications are now related to their biological properties. The use of a drug as a liquid can avoid some problems related to polymorphism which can influence a drug´s solubility and thus its dosages. Also, the arrangement of the anion or cation with a specific drug might be relevant in order to: a) change the correspondent biopharmaceutical drug classification system; b) for the drug formulation process and c) the change the Active Pharmaceutical Ingredients’ (APIs). The main goal of this Thesis is the synthesis and study of physicochemical and biological properties of ILs as APIs from beta-lactam antibiotics (ampicillin, penicillin G and amoxicillin) and from the anti-fungal Amphotericin B. All the APIs used here were neutralized in a buffer appropriate hydroxide cations. The cation hydroxide was obtained on Amberlite resin (in the OH form) in order to exchange halides. The biological studies of these new compounds were made using techniques like the micro dilution and colorimetric methods. Overall a total of 19 new ILs were synthesised (6 ILs based on ampicillin, 4 ILs, based on amoxicillin, 6 ILs based on penicillin G and 4 ILs based on amphotericin B) and characterized by spectroscopic and analytical methods in order to confirm their structure and purity. The study of the biological properties of the synthesised ILs showed that some have antimicrobial activity against bacteria and yeast cells, even in resistant bacteria. Also this work allowed to show that ILs based on ampicillin could be used as anti-tumour agents. This proves that with a careful selection of the organic cation, it is possible to provoke important physico-chemical and biological alteration in the properties of ILs-APIs with great impact, having in mind their applications.
Resumo:
Ionic Liquids (ILs) consist in organic salts that are liquid at/or near room temperature. Since ILs are entirely composed of ions, the formation of ion pairs is expected to be one essential feature for describing solvation in ILs. In recent years, protein - ionic liquid (P-IL) interactions have been the subject of intensive studies mainly because of their capability to promote folding/unfolding of proteins. However, the ion pairs and their lifetimes in ILs in P-IL thematic is dismissed, since the action of ILs is therefore the result of a subtle equilibrium between anion-cation interaction, ion-solvent and ion-protein interaction. The work developed in this thesis innovates in this thematic, once the design of ILs for protein stabilisation was bio-inspired in the high concentration of organic charged metabolites found in cell milieu. Although this perception is overlooked, those combined concentrations have been estimated to be ~300 mM among the macromolecules at concentrations exceeding 300 g/L (macromolecular crowding) and transient ion-pair can naturally occur with a potential specific biological role. Hence the main objective of this work is to develop new bio-ILs with a detectable ion-pair and understand its effects on protein structure and stability, under crowding environment, using advanced NMR techniques and calorimetric techniques. The choline-glutamate ([Ch][Glu]) IL was synthesized and characterized. The ion-pair was detected in water solutions using mainly the selective NOE NMR technique. Through the same technique, it was possible to detect a similar ion-pair promotion under synthetic and natural crowding environments. Using NMR spectroscopy (protein diffusion, HSQC experiments, and hydrogen-deuterium exchange) and differential scanning calorimetry (DSC), the model protein GB1 (production and purification in isotopic enrichment media) it was studied in the presence of [Ch][Glu] under macromolecular crowding conditions (PEG, BSA, lysozyme). Under dilute condition, it is possible to assert that the [Ch][Glu] induces a preferential hydration by weak and non-specific interactions, which leads to a significant stabilisation. On the other hand, under crowding environment, the [Ch][Glu] ion pair is promoted, destabilising the protein by favourable weak hydrophobic interactions , which disrupt the hydration layer of the protein. However, this capability can mitigates the effect of protein crowders. Overall, this work explored the ion-pair existence and its consequences on proteins in conditions similar to cell milieu. In this way, the charged metabolites found in cell can be understood as key for protein stabilisation.
Resumo:
Immobilization of Burkholderia cepacia Lipase: Kinetic Resolution in Organic Solvents, Ionic Liquids and in Their Mixtures Biocatalysis opens the door to green and sustainable processes in synthetic chemistry allowing the preparation of single enantiomers, since the enzymes are chiral and accordingly able to catalyze chemical reactions under mild conditions. Immobilization of enzymes enhances process robustness, often stabilizes and activates the enzyme, and enables reuse of the same enzyme preparation in multiple cycles. Although hundreds of variations of immobilization methods exist, there is no universal method to yield the highly active, selective and stable enzyme catalysts. Therefore, new methods need to be developed to obtain suitable catalysts for different substrates and reaction environments. Lipases are the most widely used enzymes in synthetic organic chemistry. The literature part together with the experimental part of this thesis discusses of the effects of immobilization methods mostly used to enhance lipase activity, stability and enantioselectivity. Moreover, the use of lipases in the kinetic resolution of secondary alcohols in organic solvents and in ionic liquids is discussed. The experimental work consists of the studies of immobilization of Burkholderia cepacia lipase (lipase PS) using three different methods: encapsulation in sol-gels, cross-linked enzyme aggregates (CLEAs) and supported ionic liquids enzyme catalysts (SILEs). In addition, adsorption of lipase PS on celite was studied to compare the results obtained with sol-gels, CLEAs and SILEs. The effects of immobilization on enzyme activity, enantioselectivity and hydrolysis side reactions were studied in kinetic resolution of three secondary alcohols in organic solvents, in ionic liquids (ILs), and in their mixtures. Lipase PS sol-gels were shown to be active and stable catalysts in organic solvents and solvent:IL mixtures. CLEAs and SILEs were highly active and enantioselective in organic solvents. Sol-gels and SILEs were reusable in several cycles. Hydrolysis side reaction was suppressed in the presence of sol-gels and CLEAs.
Resumo:
The ionic liquids (ILs) 1-ethoxyethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [EtO-(CH(2))(2)MMI][Tf(2)N], and N-(ethoxyethyl)-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [EtO(CH(2))(2)MMor][Tf(2)N] were synthesized, and relevant properties, such as thermal stability, density, viscosity, electrochemical behavior, ionic conductivity, and self-diffusion coefficients for both ionic species, were measured and compared with those of their alkyl counterparts, 1-n-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [BMMI][Tf(2)N], and N-n-butyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide,[BMP][Tf(2)N] and N-n-butyl-N-methylmorpholinium bis(trilfuoromethanesulfonyl)imide [BMMor][Tf(2)N][. This comparison was done to evaluate the effects caused by the presence of the ether bond in either the side chain or in the organic cation ring. The salt, LiTf(2)N, was added to the systems to estimate IL behavior with regard to lithium cation transport. Pure [EtO(CH(2))(2)MMI][Tf(2)N] and their LiTf(2)N solutions showed low viscosity and the highest conductivity among the ILs studied. The H(R) (AC conductivity/NMR calculated conductivity ratio) values showed that, after addition of LiTf(2)N, ILs containing the ether bond seemed to have a greater number of charged species. Structural reasons could explain these high observed HR values for [EtO(CH(2))(2)MMor][Tf(2)N].
Resumo:
Ionic liquids, ILs, carrying long-chain alkyl groups are surface active, SAIIs. We investigated the micellar properties of the SAIL 1-hexadecyl-3-methylimidazolium chloride, C(16)MeImCl, and compared the data with 1-hexadecylpyridinium chloride, C(16)PYCl, and benzyl (3-hexadecanoylaminoethyl)dimethylammonium chloride, C(15)AEtBzMe(2)Cl. The properties compared include critical micelle concentration, cmc; thermodynamic parameters of micellization; empirical polarity and water concentrations in the interfacial regions. In the temperature range from 15 to 75 degrees C, the order of cmc in H(2)O and in D(2)O is C(16)PYCl > C(16)MeImCl > C(15)AEtBzMe(2)Cl. The enthalpies of micellization, Delta H(mic)(degrees), were calculated indirectly from by use of the van`t Hoff treatment; directly by isothermal titration calorimetry, ITC. Calculation of the degree of counter-ion dissociation, alpha(mic), from conductivity measurements, by use of Evans equation requires knowledge of the aggregation numbers, N(agg), at different temperatures. We have introduced a reliable method for carrying out this calculation, based on the volume and length of the monomer, and the dependence of N(agg) on temperature. The N(agg) calculated for C(16)PyCl and C(16)MeImCl were corroborated by light scattering measurements. Conductivity- and ITC-based Delta H(mic)(degrees) do not agree; reasons for this discrepancy are discussed. Micelle formation is entropy driven: at all studied temperatures for C(16)MeImCl; only up to 65 degrees C for C(16)PyCl; and up to 55 degrees C for C(15)AEtBzMe(2)Cl. All these data can be rationalized by considering hydrogen-bonding between the head-ions of the monomers in the micellar aggregate. The empirical polarities and concentrations of interfacial water were found to be independent of the nature of the head-group. (C) 2010 Elsevier Inc. All rights reserved.