974 resultados para ion-selective electrode analysis
Resumo:
It is shown that near-Nernstian calibration slopes can be obtained with a Cu1.8Se electrode in a range of cupric ion buffers in spite of a high chloride content. Best results are obtained with the ligands ethylenediamine, glycine and histidine. The onset of cupric ion toxicity towards marine organisms falls within the pCu calibration range obtained with glycine, and the Cu1.8Se electrode could, therefore, be useful for monitoring cupric ion activity in bioassays in sea-water media.
Resumo:
Organic conducting polymers have attracted much interest in material science. This letter reports potentiometric response behavior of polypyrrole (PPy)polymer film electrodes prepared by electrochemical polymerization, and a new kind of ion selective
Resumo:
A new type of ion-selective electrode-water membrane system is proposed and an assumption of water membrane is confirmed. A NdCl_3 water membrane electrode has be- en made te demonstrate its applicability to the determination of Nd (PMBP)_3 (PMBP=1- phenyl-3-methyl-4-benzoyl-5-pyrazolone)in cyclohexanone. Conditions for stabilizing potential of reference electrode in nonaqueous system are optimized. It is observed that the potential response on the surface of two immiscible solution is bidirection...
Resumo:
This paper describes the fabrication of an ion-selective electrode in which a polymeric Schiff base complex of cobalt(II) is used as the ionophore.The main advantage of the electrode is that it is mechanically stable upto 3 months..The electrode shows a linear response in the range of 2.5 × 10-5-0.5 × 10-1 mol dm-3. The response time of the electrode is 30 s.The pH range at which the electrode works is 3.8 to 6.8. The electrode was found to be selective towards chloride ion in the presence of ions like Na+, Ca2+, Mn2+, ,Fe3+, Co2+, Ni2+, Cu2+, Zn2+, CH3COO-, NO3-, SO42- ,Br- and NO2-.
Resumo:
The molar single ion activity coefficient (y(F)) of fluoride ions was determined at 25 degrees C and ionic strengths between 0.100 and 3.00 mol L(-1) NaClO(4) using an ion-selective electrode. The activity coefficient dependency on ionic strength was determined to be Phi(F) = log y(F) = 0.2315I-0.041I(2). The function Phi(F)(I), combined with functions obtained in previous work for copper (Phi(Cu)) and hydrogen (Phi(H)), allowed us to make the estimation of the stoichiometric and thermodynamic protonation constants of some halides and pseudo-halides as well as the formation constants of some pseudo-halides and fluoride 1:1 bivalent cation complexes. The calculation procedure proposed in this paper is consistent with critically-selected experimental data. It was demonstrated that it is possible to use Phi(F)(I) for predicting the thermodynamic equilibrium parameters independently of Pearson's hardness of acids and bases.
Resumo:
A flow injection analysis (FIA) system comprising a cysteine selective electrode as detection system was developed for determination of this amino acid in pharmaceuticals. Several electrodes were constructed for this purpose, having PVC membranes with different ionic exchangers and mediator solvents. Better working characteristics were attained with membranes comprising o-nitrophenyl octyl ether as mediator solvent and a tetraphenylborate based ionic-sensor. Injection of 500 µL standard solutions into an ionic strength adjuster carrier (3x10-3 M) of barium chloride flowing at 2.4mL min-1, showed linearity ranges from 5.0x10-5 to 5.0x10-3 M, with slopes of 76.4±0.6mV decade-1 and R2>0.9935. Slope decreased significantly under the requirement of a pH adjustment, selected at 4.5. Interference of several compounds (sodium, potassium, magnesium, barium, glucose, fructose, and sucrose) was estimated by potentiometric selectivity coefficients and considered negligible. Analysis of real samples were performed and considered accurate, with a relative error to an independent method of +2.7%.
Resumo:
Mode of access: Internet.
Resumo:
In this article, we report the rare earth ion selective electrodes developed in our laboratory. Rare earth containing functional copolymers, rare earth oxides, and chelates have been used as active materials. Methods for preparing raw materials, behavior of electrodes, and application of rare earth ion selective electrodes in flow injection analysis have been discussed as well.
Resumo:
A flow injection analysis (FIA) system having a chlormequat selective electrode is proposed. Several electrodes with poly(vinyl chloride) based membranes were constructed for this purpose. Comparative characterization suggestedthe use of membrane with chlormequat tetraphenylborate and dibutylphthalate. On a single-line FIA set-up, operating with 1x10-2 mol L-1 ionic strength and 6.3 pH, calibration curves presented slopes of 53.6±0.4mV decade-1 within 5.0x10-6 and1.0x10-3 mol L-1, andsquaredcorrelation coefficients >0.9953. The detection limit was 2.2x10-6 mol L-1 and the repeatability equal to ±0.68mV (0.7%). A dual-channel FIA manifold was therefore constructed, enabling automatic attainment of previous ionic strength andpH conditions and thus eliminating sample preparation steps. Slopes of 45.5±0.2mV decade -1 along a concentration range of 8.0x10-6 to 1.0x10-3 mol L-1 with a repeatability ±0.4mV (0.69%) were obtained. Analyses of real samples were performed, and recovery gave results ranging from 96.6 to 101.1%.
Resumo:
Analysis methods for electrochemical etching baths consisting of various concentrations of hydrofluoric acid (HF) and an additional organic surface wetting agent are presented. These electrolytes are used for the formation of meso- and macroporous silicon. Monitoring the etching bath composition requires at least one method each for the determination of the HF concentration and the organic content of the bath. However, it is a precondition that the analysis equipment withstands the aggressive HF. Titration and a fluoride ion-selective electrode are used for the determination of the HF and a cuvette test method for the analysis of the organic content, respectively. The most suitable analysis method is identified depending on the components in the electrolyte with the focus on capability of resistance against the aggressive HF.